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ABSTRACT

A comprehensive survey of intense relativistic electron
beam physics is presented, including detailed discussions of
selected topics. The beam-generatéd plasma is characterized
through charge production rules for calculation of gas break-
down times, conductivity at breakdown, and current neutrali-
zation. Longitudinal electrostatic instability theory is re-
viewed in the context of typical beam-plasma parameters and
a model explaining the low-pressure transverse instability {the
frozen hose) is given. Transport phenomenelogy without ex-
ternal fields and with external linear pinch and solenoidal
fields is discussed and models are developed to define efficient
beam transport conditions. Transient electromagnetic {(EM)
fields are calculated for the finite geometry of the beam-drift
chamber and simple rules are given to estimate the EM fields
in-a finite cavity. Exact EM fields are numerically calculated
for a beam penetrating a plasma in a conducting pipe (the

‘current neutralization problem} and for a beam penetrating

an endplate into a neutral gas (the injection problem), Weakly
turbulent beam-plasma heating theory is summarized and con-
sistency requirements relating beam and plasma parameters
are outlined. Low pressure beam transport and collective ion
acceleration are discussed in detail and a model of synchron-
ized ion acceleration is presented.
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FOREWORD

- The material of this report is an updated revision and extension of work per-
formed mostly during a one-year contract {1968-1969) with the Defense Nuclear
Agency {DNA). Much of the research was originally published as Physics Inter-
national Company ‘quarterly reports and as a final report, PIFR-105, April 1970,
all of which have been submitted to DNA.

The major addition to PIFR-105 included here is the new work on beam
propagation in external solenoidal and linear pinch fields. The viewpoint of the
treatment on neutral gas propagation without external fields has been somewhat
modified to give more emphasis to coupled beam dynamics and electromagnetic

fields through explieit inclusion of the effects of beam transverse energy; the

beam current density is emphasized as an important parameter in beam-plasma
phenomenology, in addition to the more commontly used v/y ratio. The collective
ion acceleration model material has also been slightly revised from the originat
report version, and includes a more detailed discussmn of ton acceleration cutoff
mechanisms.

| have tried to present a rather comprehensive survey of the entire intense
beam field in this revision, and, to this end, have included a brief survey of diode
physics and a summary of steady state beam equilibrium models as well as a dis-
cussion of turbulent plasma heating. The style of the report is hopefully exposi-
tory and at a level useful as an introduction to the field. | have perhaps given too
phenomenological an approach for many tastes in the report, but in many cases
no other work exists. Moreover, in this new and very complicated field it has
been my experience that such a viewpoint is often more relevant, at least to gross
beam behavior, than highly quantitative analytical treatments which necessarily
require many impractical assumptions to be analytically amenable. It is likely
that as the field advances and diagnostic techniques become more sophisticated,
detailed theoretical descriptions will have to rely on numerical simulation.

It is a pleasure to acknowledge the technical guidance and criticism of many
individuals. | would especially like to thank Dr. Andrew Sessler of the Lawrence:
Berkeley Laboratery, Berkeley, Galifornia, who has given freely of his time and
offered invaluable eriticism and guidance throughout the program. Dr. William T.
Link, who was the leader of the Beam Physics Group at Physics International

* Company during the original program conception, encouraged me to embark upon

a beam research program in support of the experimental activities, and Mr. David
dePackh of the Naval Research Laboratory, Washington, D.C. supported the need
for such a program and gave personal encouragement.




|- wish- to acknowledge many helpful discussions with my colleagues at
Physics International: Drs. Gerold Yonas, Philip Spence, David Sloan, James
Benford, Charles Stallings, and John Guillory, and Messrs. John Creedon, Bruce
Ecker, and John Rander. Professor Wulf Kunkel of the Lawrence Berkeley Lab-
oratory has also offered many useful criticisms and suggestions.

I should like to thank my wife, Joyce Putnam, for her valuable assistance in
numerical analysis. To Mrs. Lila Lowell for typing endless equations and to Mrs.
Pat Shand for major production assistance, | also extend my deepest gratitude.

Dr. Jonathan Wachtel, currently at Yeshiva University, New York, N.Y.,
acted as the original contract monitor and his active interest provided much sup-
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* SECTION 1
~ INTRODUCTION

The electron accelerator technOIOgy necessary to generate
the electron beams to which. the reseerch of this report is _
directed is felatively new-~-five or six years old. The beam
currents of interest are in the tens of kiloamperes to megampere
range, with kinetic energies from a few hundred kiiovolts to
about 15 MeV. The beam pulse widths Vary from 20 nsec to ap-
proximately 200 nsec. We are thus dealing with intense, rela-
tivistic or near-relativistic, pulsed electron beams with total
energies ranging from kilojoules to megajoules and power levels

up to lO13 ~ 1014 watts.

Much of the initial (and continuing) development of the
pulsed power technology for intense electron beam accelerators
was by J. C. Martin and his co-workers at the Atomic Weapons
Research Establishment, Aldermaston, England. Table 1.1 lisgts
beam parameters of some accelerators designed at Physics Inter-
national Company (PI) whieh more or less cover the range of
available machines. Other organizations in the United.States
besides PI with high current electron beam accelerators and
active research efforts in the intense beam field are the Naval
Research Laboratory, Ion Physics Corpofation, Sandia Laboratories,
Cornell University, and Maxwell Laboratories. Several accelera—
tors have also been constructed or are currently under develop—
ment in the Soviet Union, notebly at the Institute of Nuclear
Physics, Novosibirsk, the Joint Institute of Nuclear Research,
Dubna, and at the Lebedev Physics Institute.




 TABLE 1.1

ELECTRON BEAM ACCELERATORS BY PHYSICS INTERNATIONAL

- Electron Current Pulse Width
‘Machine . Energy (MeV) . (kiloamperes) FWHM (nsec)

(?
312 2 25 20 U

738 0.2 to 1.5 190 to 250 40 to 50

1140 . 4to6 | 50 to 85 _ 70 -

1590 | - 6 to 10 300 65 E

B> 0.4 to 8 200 to 400 65 -

DML 0.1 to 0.15 100 to 300 40 g L
PIML 0.15 to 0.3 200 to 300 - 50 'gg

3 L

Mini-Marx 0.6 10 25
Snark o 1 ' 10 : 70 i;,f

Aurora 15 to 20 1.6 x 10° 120
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As one might expect, the beams and their self-generated
plasmas are a new regime in physics. The beam-plasma investiga-
tions of the past have bken concerned with the physics of plasmas

perturbed by beams of milliampere currents, whereas accelerator

physics has been a study of beams of even smaller currents

slightly pertﬁrbed by plEsma or collective many particle effects.
In our case the beam and;plasma are strongly coupled and most

: problems are inescapably transient. Many intense beam problems

are really problems of partially {space~charge) compensated
plasmas, a fascinating field of physics rapidly emerging in
collective ion acceleration studies, ion source development, and
in some new plasma containment system proposals.

Most of the accelerator development and beam research in the
past has been ditected toward intense X-ray source applications
and studies of material response from rapid energy deposition.
The emphasis in these areas has been on efficient beam transport
and control of beam energy density. Recently considerable
interest has arisen regarding use of intense beams in several
new areas: controlled thermonuclear reactor (CTR) applications,
high power microwave generation, collective ion acceleration,
and highly stripped ion production, to mention a few.

Intense beams offer many possibilities as a direct or
supplemental CTR plasma heating energy source and recent experi-
mental evidence of Altyntsev, et al. (Reference 1l.1) suggests
regimes of strong beam—plasma'energy coupling at interesting CTR
plasma densities (up to 1014/cm3). Turbulent beamrplasmé heating
is currently an active research area (Reference 1.2). Fleisch—
man, et al. (Reference 1.3) at Cornell have demonstrated beam
induced field reversal in an Astron configuration using a pulsed

intense beam and preliminary work on toroidal injection has also




been reported {Reference 1.4). A fruitful merging of intense
. beam and CTR research can be anticipated in the future as these
and other techniques are developed. '

Linear Beém coilective ion aéceleration methods show promise
of being able to generate high fluxes of accelerated heavy ions.
Many such schemes have been proposed during the last decade,
notably by the Soviets_(see, e.g., Rabinovich, Reference 1.5),
but their exploitation has awaited development of the electron
accelerator teChnology. The Graybill-Uglum discovery'(Reference
1.6) of beam-generated and accelerated ions with energies up to'
eight times the beam kinetic energy has renewed interest in these
approaches and has already demonstrated the potential for the
process as a highly stripéed ion source. Highericharge state
ions are preferéntially bﬁhched'and accelerated. Moreover,
seﬁeral kilojoulés of ion pulse energy can be extrapolated'frbm
the data using higher energy electron accelerators currently
within the state of the ari;

1.1 BASIC CONCEPTS OF BEAM—PLASMA INTERACTIONS--HISTORICAL SURVEY
~ The first quantitative work demonstrating the dominant
influence of the beam-generated plasma on overall beam properties
in the drift chamber was performed by Graybill and Nablo of the
Ion Physics Corporation (IPC) (Reference 1.7). Théy reported a
strong dependence of beam current density and propagation ef-
. ficiency on background gas pressure; Their results, plus the
- open shutter photography of beam—plaéma channels, performed by
Link (Reference.l.B) showed pressure regimes where, with
increasing pressure from about 10_3
radially, pinched, drifted in nearly straight lines, and re-
pinched again in the 100 torr range. (See Figure 1.1). The open
shutter photography also indicated gross stability features of

beam propagation.

1-4

torr in air, the beam blew up =
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BEAM DIRECTION

002 Torr 4716 B Q.1 Torr 5595 B

gy BEAM DIRECTION

{ Torr 47308 760Torr 4734 B

Figure 1.1 Electron beam-~gas interaction as a function
of pressure
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A'partial'interpretation of the beam behavior was made by
Graybill and Nablo using the Lawson uniform beam model (Refer-

- ence 1.9). Assuming paraxial beam trajectories, the radial

e
. B
LA

equation of motion for a beam electron, including effects of the

radial electric space charge and self-magnetic fields, is

P j

2

d 2 2 :
——; = - =z w/y) (£, - 1/¥7) r/a2 (1.1) .
dz B : \ ij
- I I (amperes) {?
v = N o - 17,000 (amperes) BL B
N = number of beam electrons/length iﬁ
I = beam current 1 -
BLc‘ = average longitudinal (z) velocity of g!
electrons = B¢ in Lawson model o
Yy = relativistic factor ' _ ' (“”?
r, = classical electron radius = e2/moc2 U
a = beam radius 1}
fe = —pion/pe = fractional electrical neutralization L
Pion = background ion charge density .
P = electron charge density : {£
The equation indicates fe > l/y2 is required to avoid beam {f

space charge blowup, and, if the background pressure were

sufficiently low so that collisional ionization could not

ey
[

achieve fe 2 l/y2 over a substantial portion of the beam pulse,
the beam would not propagate. The radialrblowup and beam pinch- {z
ing were interpreted in terms of space charge neutralization B
using the Lawson model. '




The model was unable to.explain_the drifting beéam mode at
0.5 to 1 torr pressure, howéver.' The nearly straight line
(}. motion of filamentary beams in this pressure range, as evidenced
i by the beam self photos, was suggestive of complete force
ey neutralization, and Dr. David Sloan of PI first suggested the
L; concept of current neutralization. The rising beam current

generates a dBe/dt, or inductive, longitudinal electric field

beam current. Link made an ad hoc modification of the radial

¢ . . . » s
Lg which drives plasma electrons in a direction to neutralize the
[} : equation of motion in the Lawson model to account for current

neutralization:

[i- 2
| a%r 2\)[ 2
S ~ 2V 11 -f -4 l-f)]r
. dz2 | 82Y32 e ( m

f
T m

P

fractional magnetic neutraligzation = Ip/Ib

|
-
{
S
]

plasma return current enclosed at the beam edge
f? If £ ~ f =~ 1, the electrons drift in a force-free environment.

Ew In order that fm ~ 1, one immediately realizes that the

ok beam~generated plasma must be a good conductor; i.e., the gas

. ' must breakdown._ Gaseous discharge theory and experiment suggest,

21 'however,'that'a 0.1 torr pressure gas probably has a higher

" breakdown conductivity than at 1 torr. The question then arose
as to why the 0.1 torr range showed pinched beams with maximum

| magnetié field or minimum current neutralization. Creedon

L (Reference 1.10) used the breakdown data of Felsenthal and Proud

i

bt (Reference 1.11) to estimate breakdown times due to avalanching

- caused by the inductive electric figld. He suggested that the

L] _ ~time of breakdown with respéct to the beam current rise was the

important parameter, as long as the conductivity in the pressure

B
; Y




- regime remained high enough to give magnetic diffusion times
exceeding the beam pulse width. In other words,lwhen the gas
breaks down, the magnetic field level frozen in the plasma is
that due to the beam current at the}time of breakdown. Breakdown
at nearly peak beam currents will résult in fm ~ 0 and breakdown
very early in the pulse gives fm ~ }. At high pressures (> few
torr) the plasma conductivity drops and, even though breakdown
oécurred early in the pulse, the beam current is not substan-
tially neutralized. These ideas essentially completed the basic

interpretation of the Graybill-Nablo and Link data.

Yonas and Spence (Reference 1.12) subsequehtly performed
careful measurements of gas breakdown times as a function of
pressure and developed a semi-empirical magnetic diffusion model
to relate the net current to the beam current profile. Their
model directly utilized breakdown time measurements of Felsenthal
and Proud, (F-~P) but their beam parameters required extrapolation
of the F-P data beyond its range of vali&ity at low pressures.
Moreover, the charge production calculations of Creedon gave
much too high plasma densities at the measured lower preséure
breakdown times of Yonas and Spence. A charge production model
was proposed by the author (Reference 1.13 and 1.14)) to explain
these discrepancies and to give a physical basis for the good
empirical agreement with F-P data in the 1 torr range. The model
basically suggests that electron avalanching is unimportant until
fe = 1. The space charge fields are tqo high (l_O5 to 106 V/cm)
for avalanching, i.e., the secondary electrons generated by
collisional ionization become relativistic and, moreover, their
motion is primarily radial out of the beam channel. This simple
modification allowed consistent estimates of breakdown times in

agreement with the Yonas-Spence data.
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As higher current electron'accelérators were developed} the

Al fven-Lawson current limit (Reference 1.15) for existence of a

uniform beam with a given kinetic energy was approached. This
limit is v/y ~ 1 for a space charge neutralized beam, independent-
ly of the beam radius. There are several physical interpreta-
tions of this limit: '

<st2>
1) vw/y ~ 5
‘ <BL >
2) vy &3
' Ee m
3) \)/_Y mﬁ - .
: kin
where ?

2. 2 , : ‘ o '
<Bt > c = average transverse electron velocity sguared
<BL2> c2 = average longitudinal electron velocity squafed

r = Larmor radius of gyration of beam electrons in
the beam self-magnetic field at the beam edge

E m. - electromagnetic field energy/beam particle

€. m. or per unit length
Ekin = kinetic energy/beam particle or per unit length .

Most researchers emphasized interpretation (2) which states that
when v/y ~ 1, electrons will turn around over the radius of the
beam; i.e., not propagate. Graybill, Uglum, and Nablo (Refer-

ence 1.16) performed experiments which showed such beams would

- not propagate, and for a time, the beam physics community was




astir with questlons about the feasibility of propagatlng beams
with currents hlgher than the Alfven limit. The author suggested

(Reference 1.17) that current neutralization would allow propaga-

tion of v/y > 1 beams as long as vnet/Y < 1, where v*®% includes

the beam current and the backstreaming plasma current. Moreover,

Hammer and Rostoker (Reference 1.18) derived a hollow beam
‘equilibrium model (no current neutralization) whlch removed the
v/y ~ 1 limitation of an orbital 1nterpretatlon.. Production and
propagation of v/y > 1 beams was first reported by Yonas and
Spence (Reference 1.12) and later by Andrews et al. at Cornell
{Reference 1.19).

We also have suggested that the third interpretation of v/y
is the dominant limitation on efficient beam propagation (Refer-
ence_l.13). When vnet/Y > 1, the electromagnetic self energy
dominates the beam kinetic energy, independently of the details
or orbit dynamics. Beams then strongly interact with cavities,
degrading their kinetic enérgy.at the beam front over distances
comparable to the beam radius either by the épace charge field,
or, in the case of electrical neutrality and partial current
neutralization, by the inductive field.

- The average transverse beam particle energy is comparable
to the longitudinal or streaming energy when v/y ~ 1 and roughly
50 when vnet/y ~ 1 (interpretation 1). J. C. Martin and D.
Forster of his group were probably the first to emphasize the
importance of beam transverse energy (Reference 1.20) and Yonas
et al. subsequently performed careful measurements of the
average beam transverse energy (Reference 1.12). They also
ascribed the relatively poor beam transport efficiency (30 to
40 percent over meter distances) of v/y ® 1 beams (even with
/vy < 1) in neutral gases to loss of higher transverse energy

Vnet
beam components. The rapid gas breakdown requirement for good

f i
-




current neutralization is in’' conflict with the requirement for a
“high net magnetic field to contain beam transverse energy. A
"cold" beam (<Bt?>/<BL2>'<‘l) with vnet/Y < 1 is thus required
for efficient transport in neutral gases or pre-ionized plasmas.

1 :

!

i

%

J

z To illustrate the implications of the statement further, we
can assume injection into a preionized plasma of high conductiwv-

~ity, thereby assuring that vnet/Y < 1. The cold beam requirement
means that the injected beam electrons must be nearly paraxial.

We are then led to the concept of the critical diode current,

- - ! 1
[ — i

Ic’ first intrbduced by Friedlénder, et al. (Reference 1.21):

T
e led

I, =~ 8500 gy (r_/q),
{é with r, the cathode radius and d the anode-cathode gap spacing.
Physically this current is the value at which an electron emitted
{%11 at the cathode edge would strike the anode tangentially under the
= influence of the self-magnetic field, and with neglect of the
{? radial electric field. If I < I, in the diode, the beam is cool,
. and the onset of pinching occurs around I ~ Ic._ The diode peak
s voltage places a minimum value upon d to avoid impedance collapse
{j over the beam pulse width. This restriction in turn places a
' minimum value upon r, for a cold beam.  In other words, efficient
L_é transport in neutral gases or pre-ionized plasmas places an
upper limit on beam current density. Benford and Ecker (Refer-
(?_ ence l.22f have demonstrated major beam energy loss upon in-

5 A/cm?) beams into a pre-

jection of high current density (~ 10
B ionized plasma. The loss occurred within a few centimeters of
L the anode. The need to transport high v/y, high current density

beams thus led to investigation of external field propagation

T

techniques.

———

i
i
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Roberts and Bennett (Reference 1;23) first transported a
relativistic beam (V/y ~ 0.2) in a linear pinch plasma. They
observed nearly complete current'neutralization and reported
efficient transport. Their work was extended by Benford and
Ecker (Reference 1.24), who transported hot beams /y 27,
~ 10 > A/cm ) with efflc1enc1es > 90 percent. They also proposed
a single particle orbit theory model to explain the details of
beam propagation.' This model states that beam propagation is a
superposition of injected electron orbits in the undistorted |
"magnetic field of the pinch at injection. Generally speaking,
we expect that efficient propagation will occur when charge and
current neutralization short out beam self fields, and that any
distortion of the external field-plasma system will result in beam
energy loss. Single particle orbit model conditions therefore
prevail with efficient transport. The single particle orbit
model-is extended in this report to allow for field-plasma

distortion.

Beam propagation in external soleroidal fields was first
studied by Andrews, et al. (Reference 1.25) at Cornell using a
v/y ~ 2 beam. At present solenoidal transport work is underway
at PI, Naval Research Laboratory, Cornell University, Sandia
Laboratories, and Maxwell Laboratoriesr(Reference 1.26). An
interesting result reported by Stallings (Reference 1.27) is a
reduction in tfan5port efficiency as the external field is in-
creased beyond about 9 kilogauss. Lee and Sudan (Reference 1,28),
have predicted a drop in current neutralization at high B, fields
due to incomplete space charge neutralization, and a more restric-

tive limitation on the solenoidal field is argued in this report.
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I , : Several experlments on beam comblnatlon and focu51ng have
{ ' been reported within the last year. Benford and Ecker have

- . combined two hlgh v/y beams in a linear pinch plasma (Refer-

l B ence 1.29)}, and magnetic mirror compression experiments by

Davitian, et al., (Reference 1.30), have shown beam area compres-

z sion of a factor of 3 with v/y ~ 2.5 beams. Cold beam geometrical
- focusing experiments in a neutral gas transport system have been
reported by Kelley at Sandia (Reference 1.31), Martin (Refer-

ence 1.32), and Bradley (Reference 1.33).

Lj ' We.have surveyed the experimental and conceptual development
oy | cf intense beam plasma physics up to this point from the histori-
LJ .cal perspective of beam transport and energy density control.
As we have already mentioned, intense beams are currently being
i} studied for CTR applications and collective ion acceleration.
The discovery of collectively accelerated ions by Gfaybill and
}wwﬁ Uglum (Reference 1.6) at IPC renewed interest in linear beam
= collective field acceleration possibilities. Rander, et al.
. {Reference 1.34) continued the IPC work with the use of nuclear
LJ emulsion and magnetic spectroscopic diagnostic techniques and
- Rander (Reference 1.35) correlated the beam front velocity with
Lé the first ion pulse. Several models have been advanced to
explain the ion acceleration (Reference 1.36) and a detailed
[‘ presentation of one .of them, the localized pinch model, (Refer-

ences 1.37 and 1.38) is given in this report.

Altyntsev, et al. (Reference 1l.l1) have reported strong

(”' o beam plasma energy coupling u51ng a vy ~ 0.1 beam 1njected
i into low density-preionized plasmas (10ll - /cm ). This
- , experiment has generated interest in beam—plasma turbulent

(ﬁ heating, and Lovelace and Sudan (Reference 1.2) and Guillory

and Benford (Reference 1.392) have recently proposed return




current anomalous plasma heating via ion acoustic modes. The
experiment of Andrews et al. (Reference 1.3) on beam injection
into an Astron geometry is an important preliminary investigation

of beam confinement, as we have previously mentioned.
1.2 DISCUSSION OF REPORT

The material of this report is organized into three sections.
Section 2 is intended as a comprehensive, essentially self-
contained, survey and development of the entire intense beam
field. The viewpoint is mainly phenomenological, with an '
emphasis on defining efficient transport systems. Section 3 is
a formulation of the quadrature of the electromagnetic (EM)
fields in sYstems without solenoidal fields. The objective of
this work was to explore the role of finite boundaries, finite
beam risetime, and transient effects. These effects have not
been treated in other theoretical work on current neutralization
(Reference 1.40). Section 4 is entirely devoted to an analysis
of ion acceleration models and a presentation of the localized
pinch model, in particular. The material of this section is a
"zero-order" coupled analysis of radial and longitudinal ion-

electron electrodynamics.,

The physics of intense beams can be broken up into several
sub-areas which, of course, must be ultimately coupled in a

gself-consistent fashion:

1. EM field determination; i.e., given the beam current
profile, what are the EM fields with appropriate boundary
conditions?

2. Characterization of the background gas plasma - charge
density and conductivity as a function of time and space.




3. Beam dynamlcs - formulation of realistic, but tractable
egquations of motion of beam partlcles and/or the beam en-
velope. -

4., Beam stability - definition of stable propagation modes
(longitudinal electrostatic and transverse modes) and in-
stability growth rates in unstable regimes. -

The first part of Section 2 essentially follows the above
outline. We start, after a brief review of diode physics, by
developing a simple ad-hoc model of beam-generated EM fields in

finite cavities, complementary to the exact formulations in

i_Section 3. The model includes EM fields due to variations in

beam radius with distance and time, endplates,'changes in current
with time, and charge neutralization. 1In particular, we discuss
the effects of endplates and variations in charge neutralization
upon the longitudinal electric field. Aside from the implicit
inductive longitudinal electric field of current neutralization

calculations (Reference 1,40), the inductive field estimates

‘used in electron avalanching calculations in neutral gases (Ref-

erences 1.10 and 1.12) and the space charge field estimates in
the Rostoker and Graybill and Uglum ion acceleration models
(Reference 1,36), the literature of intense beam physics does
not consider E, fields. (Most calculations pertain to steady
state equilibrium configurations.) The model thus gives a more
complete characterization of the transient longitudinal elec-

tric field in the finite cavities of practical beam problems.

We appiy the cavity model in developing a procedure for

calculating gas breakdown times in neutral gases. The model of

R Creedon (Reference 1.10) predicts background plasma charge

densities that are too high, according to experimental data, and




Yonas and Spence used the empirical data of Felsenthal and .
Proud (F-P) (Reference 1.1l1} in their work on ga$ breakdown. Our
model justifies the data correspondence with F~P on. physical
grounds with certain E/P (E/E is the electric field.pressure
ratio) regimes and gives good agreement with experimental break-
down measurements at low E/P regimes where F-P does not. The
model recognizes that the high E/P values that exist before

space charge neutralization do not lead to significant electron
avalanching-secondary electrons become relativistic over dis-
tances of the beam radius_or'less and, moreover, the electric

field is primarily radial, driving secondary electrons out of

- the beam channel.  We propose a charge production estimate using

collisional ionization only until fo ™ 1, then using the induc-
tive field for avalanche calculations. The model has one unde-
termined parameter, the ratio of the background plasma secondary
electron density to beam electron density at breakdown. Empiri-
cal determination of this parameter from one data point gave
agreement with Yonas and Spence data at other pressures, Once gas
breakdown times are calculated, the conductivity after breakdown
and the fractional magnetic neutralization can be estimated. The
charge production model also predicts that beam transverse tempera-
ture should affect current neutralization and preliminary data

tends to support this result.”

Section 2.7 considers beam envelope motion in some detail
using the analytically tractable Kapchinskij-vVladimirskij envel-
ope equation for beams with finite emittance. TLimits on beam

focussing imposed by finite emittance are discussed. A review

* Private communication, J. C. Martin; January 1971.




of high v/y beam equilibrium models is also included. |

_ The physical implications of the dimensionless ratio v/y

- used to characterize beams are outlined and it is argued that
current neutralization accounts for experimental results showing
propagation of O/Y > 1 beams. This interpretation was first
suggested during the prograﬁ (Reference 1.17) and is now commonly
accepted in the beam physics community. We have further proposed
that the dominant restrictioh on high v/y beam propagation is
electromagnetic; i.e., even with current neutralization, vnet/y<l
in order that the beam not seriously degrade its kinetic energy
to magnetic field energy. This restriction is dominant in the

- _ sense that it obtains nearly independently of the beam current

density distribution in radius. The original propagation limit

on uniform beams, v/y ~ 1, or the Alfven criterion, is essentially

an-orbital limitation for forward drift of the electrons. Hammer

; and Rostoker (Reference 1.40) removed this orbital limitation in
principle by deriving self-consistent "hollowed-out" current

i distributions.

The longitudinal ES instability work of several authors is

summarized in Section 2.8, and we conclude that instability

”1' heating of plasmas has not been important in most beam transport
{; experiments. Transverse instability modes of low pressure (0.1

N torr) beams are then discussed and a phenomenological model is
[§ argued which allows predictions of the instability wavelengths

- in good agreement with the data. This model is the "frozen-hose"
(? | model, first proposed by the author (Reference 1.41). The model

| stems from a recognitioﬁ of the need to utilize two characteristic
(@ times in instability growth of beams in neutral gases. Early

Lo times are defined as times before breakdown where the plasma is




nonconducting and post breakdown times are usually resistive
with characteristically longer growth times. This model led to -

the concept of plasma channeling (Reference 1.13) and a necessary

criterion for beam combination in neutral gas systems.

The role of beam transverse energy is empha51zed in the
summary of neutral gas transport phenomenology of Section 2.10.1.
A criterion is derived giving upper limits on beam electron trans-
verse energy at injection, and it is shown that this criterion
amounts to a restriction on current density. The transverse energy
containment criterion can aléo be expressed in terms of a dimen- =
sionless parameter, R , analogous to the plasma B:

R = beam and plasma transverse energy/volume/(Bnet)z/Sﬂ

Inasmuch as Bget' the net magnetic field including current neu-
tralization, is not a beam parameter, current density is perhaps { “E
.

a more convenient parameter for beam characterization, in addi-

tion to the v/y ratio (which is independent of beam radius). {g

Transport phenomenology in linear pinch (B@) fields is cover- .
ed in Section 2.10.2 and conditions are outlined for validity of {
single particle orbit transport. In the single particle model

the beam propagation is a superposition of injected beam electron 1?
orbits in the undistorted magnetic field of the pinch plasma at
injection. We consider pinch field-plasma distortion'induced'by | f€~
transverse pressure imbalance due to the beém. An "inverse snow- E
plow" model is developed which allows estimation of the distor- [
tion time scale for given beam and pinch parameters. This work |
is the first modeling of distortion of intense beam plasmas and {g

fields within the diffusion approximation. Plasma and field




lines expahd while maintaining nearly constant enclosed magnetic
flux.‘ The criteria for single particle orbit theory are compar-
ed with the experimental data of Benford and Ecker {(Reference

1.24) and it is shown that their use of such a model is consis-

. tent with experimental conditions.

The discussion of transport phenomenology concludes with a
preliminary outline of solenoidal field transport. A simple
uniform beam model explicitly considers paramagnetic and diamag-
netic beam and plasma effects due both to gyrorotation and rota-

tion about the System axis induced by space charge and Be fields.

A diode flow model appropriate to large aspect ratio diodes where

the radial electric field effects are negligible shows that

v/y > 1 beams are net paramagnetic and also gives the maximum

‘ratio of B_ to B, for uniform current density flow,. Diamagnetism

0 ‘
and paramagnetism in the transport system are related to fe and

fm' and are shown to be additional beam energy loss mechanisms.

‘Also proposed is a new model giving upper limits on the applied

BZ field for efficient transport. The model carries over ideas
of current neutralization in the z direction to theta currents.
The perpendicuiar conductivity at breakdown has to be large
enough to allow theta plasma currents to neutralize the beam
theta currents. This condition in general gives a lower B
field level for efficient transport than the criterion of Lee
and Sudan (Reference 1.28) regarding destruction of z current

neutralization by high B, fields.

Section 2 concludes with a summary of turbulent plasma heat-
ing and a proposal for an intense neutron and X-ray source using

collectively accelerated deuterium ions., The turbulent heating

~discussion outlines conditions necessary for consistent estimates -

of anomalous plasma heating. Simple formulas for maximum plasma

electron temperature estimates are derived.




The determination of the EM flelds generated by general

.beam current distributions (accelerated and non—accelerated) in
finite cavities is discussed in Section 3. We cénsider in de-
tail the EM fields of constant velocity beams with finite rise-
times, pulse width and decay time in circular conducting pipes
with and without endplates. The EM guadrature is in a convenient
form for looking at endplate effects, and can easily be reduced
to the cases with one or no endplate. Numerical evaluations are
given for two interesting beam problems-~the current neutraliza-
tion problem (Section 3.2) and the beam injection into a cavity

problem (Section 3.4).

The current neutralization problems considered by other
authors pertain to semi-infinite beams in infinite homogeneous
plasmas (Reference 1.40). The beam has a zero riselength and is
suddenly "switched on" at t=0. Our work is the first exploration
of the effects of finite boundaries and finite beam risetimes, and
we explicitly determine the fields near the beam head. The blunt
beam and highly conducting plasma limits, which are the cases
treated by other authors, are quantitatively defined in terms of

beam, plasma, and chamber parameters.

A current neutralization problem is evaluated for a beam in
a finite radius drift tube which gives closed form expressions
for the EM fields and contains the dominant terms of more general
. radial current density distribution profiles. The fields are
- plotted as a function of distance behind the beam head in the
beam front region and show the essential role of the conducting
boundary in determining the electric field attenuation behind
the beam front in weakly conducting plasmas (plasmas where the
plasma skin depth is of the order of the chamber radius).
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______ - The Eé field is plotted in Section 3.4 for a beam injected
into a neutral-gas-filled cavity (zero conductivity) and the
effects of the endplate and finite drift tube radius are exhibif
ted. We derive criteria for negligible endplate influence on
beam fields. It turns out that endplates have two effects on

the E, field; the sign and magnitude may be substantially alter-
- ed (this effect is primarily electrostatic), and the accelerated
) surface charges of the conducting boundaries give rise to pre-

L] ~ cursor radiation. If the beam is highly relativistic (travelllng
at nearly c) the precursor radiation induces field oscillation in
| the beam front region. The conditions for neglect of endplate
effects are that the precursor radiation front be far in front

of the beam head, and secondly, that the beam front and region of
interest be far beyond the E, field-reversal point near the cham-

ber endplate. An approximate expression is given for the point

~ behind the beam heat where the E, field reverses direction. The
"""" ™ formula involves both the chamber radius and the relativistic vy
AT factor of the beam.,

The collective ion acceleration discussion of Section 4 con-
siders in detail some implications of experimental data with re-
spect to models of Rostoker, Graybill and Uglum, and Wachtel and
Eastlund (Reference 1.36).  The Rostoker model attributes ion

acceleration to space charge fields near the front of a beam pene-
trating a neutral gas. Acceleration of the space charge well is
| due to a decreasing charge neutralization time caused by precursor
radiation andrelecfrons, and Rostoker argues a particular time

history of well acceleration which gives ion energies independent

of mass, in accordance with the data. Acceleration terminates
when the well has accelerated to a value where the space charge

E § '~ field is no longer adequate to trap ions.




.Graybill and Uglum also suggest a one-dimensional accelera-
ting space well model, Ion acceleration in their model does not
occur at the beam front, but begins near the anode window of
the drift chamber after fe exceeds 1/72. In our opinidn they do
not argue an . accelerated well, however, but only a constant
velocity well moving at a rate determined by the gas breakdown

“time.

. Wachtel and Eastlund have proposed the Veksler "inverse Ceren-
kov" acceleration process as an explanation of observed ion accel-
eration, The Veksler theory assumes existence of an ion bunch
whose dimensions are small compared to the resonant plasma wave
length, A =27 vb/w?; Vb is the beam electron velocity and wp is
the beam plasma frequency. In order to extend the Veksler theory
to a non-bunched ion distribution (the background ion charge dis-
tribution) they somewhat arbitrarily define an ion bunch as ions |
within the Debye sphére. ' The problem of the longitudinal phase
stability of the accelerating bunch is not considered; i.e., the
ion bunch is assumed to be rigid. We estimate limits upon ion
energies due to excitation of longitudinal electrostatic stream-
ing instabilities and conclude that the maximum ion kinetic ener-
gy is too small to explain the data. This approach obviates the
necessity of arguing initial formation of an ion bunch in order

to apply the Veksler theory.

A new model of ion acceleration, the localized pinch model
(LPM), is discussed, and it is argued that the model gives the
most comprehensive agreement with presently established features
of the data. 1In particular, the model can explain multiple ion
pulses; i.e., acceleration can occur either near the beam front
or behind it. The model proposes a two~dimensional electromag-

netic acceleration mechanism, in contrast to the one-dimensional
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electrostatic models of Rostoker and Graybill and Uglum.. More-
over, LPM includes a self—synchrOnizing mechanism to keep the
ions in phase with the accelerating fields. The one-dimeneional
models do not have this feature; the potential well, in a sense,
happens to accelerate properly to give partial trapping. The
synchronization is achieved in the LPM by the electric field
associated with a non-adiabatic pinching of the beam envelope.
The presence of the ion bunch locally shorts out the radial elec-
tric space charge field and the magnetic field then causes the
beam to contract. A longitudinal electric field in the direction
of electron flow results from the higher electron charge density
in the constricted region. With typical parameters of ion accel-
eration experiments the pinching field is large enough.to degrade
the electron kinetic energy over distances of a few beam radii,
giving rise to additional electron bunching. This latter bunch-
ing provides longitudinal phase stability.

The rise length of the ion charge density enhancement of

the bunch must be of the order of the beam radius to allow rapid

(non—adiabatic)'contractidn of the beam envelope, and thereby
generate high.enough fields to degrade the electron kinetic energy.
It is shown that the space charge well near the anode window can
form sharply defined bunches and a criterion for bunching is
derived which_translates to an upper limit on gas .pressure for

ion acceleration.

Various possible acceleration cutoff mechanisms are con-
sidered in the context of experimental data and it is suggested

- that ion depletion is a likely explanation. The background ion

currents generated by the accelerating fields around the ion
bunch deplete the ion supply behind the bunch and an electrosta-
tic well is then re-established near the anode window, terminating




further acceleration. As collisional ionization continﬁés the
.process repeats. Experiments are proposed to identify the
nature of the acceleration cutoff mechanism. ‘

1-24




REFERENCES
SECTION 1

A. Altyntsev and others; JETP Letters, 1971, Vol. 13,
page 139; Unclassified.

R. Lovelace and R. Sudan; Physical Review Letters, 1971,
Vol. 27, page 1256; Unclassified; A. Altyntsev and others;
IAEA Conference on Plasma Physics and Controlled Nuclear
Fusion Research, Madison, Wisconsin, 1971, IAEA/CN-28,
Paper E20; Unclassified.

M. Andrews and others; Physical Review Letters, 1971,
Vol. 27, page 1428; Unclassified,

G. Melxel and others; Bulletin of - the American Physical
Society, 1971, Vol. 16, page 1251; Unclassified.

M. Rabinovich; Lebedev Physics Institute, March 1969,
Preprint Number 36; UCRL Translation 1398, Lawrence

Berkeley Laboratory, Berkeley, California; Unclassified.

S. Graybill and J. Uglum; Journal of Applied Physmcs,
1970, Vol. 41, page 236; Unclassified.

S, Graybill and S. Nablo; Applied Physics Letters, 1966,
Vol. 8, page 18; Unclassified.

W. Link; IEEE Transactions on Nuclear Science, 1967,
Vol. NS-14, page 777; Unclassified.

J. Lawson; Journal of Electronics and Control, 1957,
Vol. 3, page 507; Unclassified and 1958, Vol. 5, page 146;
Unclassified.

J. Creedon; PIIR-17-67, March 1967; Physics Internatlonal
Company, San Leandro, Callfornla, Unclas51f1ed

P. Felsenthal and J. Proud; Physical Review, 1965,
Vol. 139, page Al796; Unclassified.




1.12

1.15

1.16

1.17

1.18

G. Yonas and P. Spence; PIFR-106, October 1968 and
PIFR~106-2, August 1969, Physics International Company,
San Leandro, California; Unclassified,

S. Putnam; PIFR-105, April 1970; Physics International
Company, San Leandro, California; Unclassified.

S..Putnam; PIIR-29-71, June 1971; Physics International
Company, San Leandro, California; to be published in IEEE
Transactions on Nuclear Science, Eleventh Symposium on
Electron, Ion, and Laser Beam Technology, Boulder,
Colorado, held in May 1971; Unclassified.

H. Alfven; Physical Review, 1939, Vol. 55, page 425;
Unclassified. .

S. Graybill and others; Bulletin of the American Physical
Society, Series II, 1968, Vol 13, page 56; Unclassified.

S. Putnam, PIQR-105-1, August 1968, Physics International

Company, San Leandro, California; Unclassified.

.D. Hammer and N. Rostoker; Physics of Fluids, 1970,

Vol. 13, page 1831; Unclassified.

M. Andrews,  and others; Applied Physics Letters, 1970,
Vol. 16, page 98; Unclassified.

G. Yonas; private communication, February 1970.

P, Friedlaﬁder and others; DASA-2173, September 1968,

Defense Atomic Support Agency, Washington, D.C.;
Unclassified.

J. Benford and others; PIIR-10-70, December 1969, Physics
International Company, San Leandro, California;
Unclassified: Accepted for publication in Physics of
Fluids. '

T. Roberts and W. Bénnett; Plasma Physics, 1968, Vol. 10,
page 381; Unclassified. '

J. Benford and B. Ecker; Physical Review Letters, 1971,
Vol. 26, page 1160; Unclassified. ‘

M. Andrews and others; Physics of Fluids, 1970, Vol. 13,
page 1322; Unclassified. '

—




o~

. §

b

[

H
i

1.26

1.34

C. Stalllngs, PIFR-227/295, September 1971, Physics:
International Company, San Leandro, Callfornla,
Unclassified: J. Block and others; to be published in
Proceedings of IEEE Eleventh Symposium on Electron, Ion
and Laser Beam Technology, Boulder, Colorado, May 1971;
Unclassified: J. Bzura and S. Linke; Bulletin of the
American Physical Society, 1970, Vol. 15, page 1452;
Unclassified: ©P. Bolduc and E. Patterson, Bulletin of the
American Physical Society, 1971, Vol 16, page 1230;
Unclassified. - |

C. Stallings, S. Shope and J. Guillory; to be Qubllshed
see also Reference 1.26; Unclassified. |

R. Lee and R. Sudan; Physics of Fluids, 1971, Vol. 14,
page 1213; Unclassified. '

J. Benford and B. Ecker, PIFR-227/294, September 1971,
Physics International Company, San Leandro, California;
Unclassified: to be published in Physical Review Letters.

H. Davitian and others; Bulletin of the American Physical
Society, 1970, Vol. 15 page 1452; Unclassified.

J. Kelley, Bulletin of the Amerlcan Physical Society,
1971, Vol. 16, page 1230; Unclassified.

J. C. Martin, M. Goodman, T. Storr and H. Herbert;
January 1971, Paper presented at DASA Simulation Meeting,
Washington, D C.; Unclassified.

L. Bradley and others; to be published in Proceedings of
IEEE Eleventh Symposium on Electron, Ion, and Laser Beam -
Technology, Boulder, Colorado, May 1971; Unclassified.

J. Rander and others; Physical Review Letters, 1970,
Vol. 24, page 283; Unclassified.

J. Rander; Physical Review Letters, 1970, Vol, 25,
page 893; Unclassified.

N. Rostoker; Report No. LPS 21, 1969, Laboratory for
Plasma Studies, Cornell University, Ithaca, New York: .
Unclassified: J. Wachtel, B. Eastlund, Bulletin of the
American Physical Society, 1969, Vol. 14, page 1047;
Unclassified: 8. Graybill and others; DASA Report 2477,
June 1970, Defense Atomic Support Agency, Washington,
D.C.; Unclassified.




1.40

1.41

S; Putnam; Physical Review Letters, 1970, vol. 25,
page 1129; Unclassified.

S. Putnam; IEEE Transactions on Nuclear Sciencé, June

. 1971, Vol. NS-18, page 496; Unclassified,

. F. Guillory and G. Benford; "Estimates of Dense Plasma

Heating by Stable Intense Electron Beams," submitted to
Plasma Physics; Unclassified. i
S. Chandrasekhar; "The Electromagnetic Wake Following a
Pulse of Charged Particles," July 1961, IDA Report:
Unclassified: 8. Yadavalli; Physics of Fluids, 1965,
Vol. 8, page 956; Unclassified: J. Cox and W. Bennett;

Physics of Fluids, 1970, Vol 13, page 182; Unclassified:

D. Hammer and N. Rostoker, Physics of Fluids, 1970,
Vol. 13, page 1831; Unclassified.

S. Putnam; PIIR-7~-68, March 1968, Physics International

Company; San Leandro, California; Unclassified: -also,
references 1.13 and 1.14.

1-28

[

[




RS |

N
(A

.....

SECTION 2
GENERAL BEAM PLASMA INTERACTION PHENOMENOLOGY

In this section we discuss a wide range of topics inﬁ
intense beam-plasma physics from a point of view which hope-
fully will be practically useful, i.e;, we emphasize basic
physics and show how relatively simple models can describe
most of the gross features of beam~plasma interéctions. We
begin the discussion with a summary of the present status of .
high current diode physics.

2.1 DIODE PHYSICS

2.1.1 Space-Charge Limited Flow. All of the pulsed
relativistic beam diodes for currents higher than a few

thousand amperes have field emission-initiated electron flow.

A variety of cathode surfaces have been used--needles, milled
metal with grobves, razor blades, roll pins, etc. As a general
rule, whén the macroscopic electric field level at the cathode
surface reaches 2-3x105 V/cem, field emission occurs from micro-
scopic'whiskers or roughened edges. The whiskers vaporize,
creating a “plasma cathode" that can essentially emit with a
Zero work functibn-up to the space charge limit. . The emitted
current density is then limited to a value for which the
éssociated space-charge cloud in the anode-cathode gap reduces
the electric field to zero at the cathode. (The thermal energy
of the plasma electrons is negligible compared to the applied
voltage.)
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All analysis of diode flow has been confined to steady
state'flow_where di/dt =0, I is the diode current. In
practice, inductive effects decreases the electron kinetic

energy during current rise. The kinetic energy of electrons

entering the drift chamber is usually obtained as a function

*
of time by subtracting the inductive voltage drop (L g%)

from the measured diode voltage preofile. The inductance, L,
may be determined experimentally using a load resistor of

approximately the same radius as the beam. A further inductive

correction resulting from beam pinching ( %%) may be necessary

for rapidly contracting beam envelopes.

A diode should, of course, be matched to the generator
for maximum energy transfer. In steady state, this means
that the diode impedance should equal the generator internal
impedance. We must detérmine the type of electron flow to
achieve proper diode impedance. The two types of flow of
greatest'practical relevance to high-current diodes without
external magnetic fields are planar space-charge limited, or
Langmuir-Childs flow (Reference 2.1), and parapotential flow

(Referehce 2.2 through 2.4). A rough transition criterion is

whether or not the current is to exceed the so-called critical

current (References 2.3 and 2.4):

2

I, = 8500 Yo -1 (xr/4)
where Ic = critical current in amperes
Y, = electron total en_ergy/moé2
mo = electron rest mass
r., = cathode radius
d = anode-cathode gap.spacing

¥
L is the effective beam-diode chamber inductance.
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The crltlcal current is the current level at Wthh the self-~
magnetlc field of the beam becomes large enough to -cause the
electrons-at the beam edge to 1mp1nge tangentially on the

anode. The derivation of Equation (2.1) is quite.simple——we

include it here to indicate the approximate nature of the
criterion. '

We assume a cylindrically symmetric diode'as indicated

- 'in Figure 2.1, and neglect the radial electric field. This

neglect is probably not too serious for large aSpect-ratio
(rc/d) geometry. Moreover, we take By constant for the outer-

most electrons. Again, this approximation is not severe for

‘large aspect-ratio diodes. The radial equation of motion for

the outermost electrons is then

. B
ag (r v o= (mo) Vz © . (2.2)
with
271
B &~ 2=
8 cr,
v, = ‘radial velocity component
Integrating, v B .z
B = X = 0 T (2.3)
r c ym, < *

At the anode, grazing incidence means Br = B,
Br = m——— : (2.4)

with Yo corresponding to the anode potential, VO; Substituting
for B, in Equations (2.3) and (2.4) gives Equation (2.1).
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Anode

\\ Cathode (V = 0)

E_ = longitudinal electric field
B, = self~magnetic field of beam

V = potential

r = cathode radius

Figure 2.1 The critical current geometry
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In spite of the approximations above, Ic_is a useful
experimental guide for onset of beam pinching for intermediate
(rc/d) values. Clark and Linke (Reference 2.5) have shown that

pinching starts at about 80 percent of Ic'for diode impedances

R

in the 5 to 10 ohm range and (rc/d) 2 6. However, experiments
by Ecker at Physics International (Reference 2.6) using '

IS

(rc/d) ~ 20 have shown that no appreciable pinching occurs at
I, which is perhaps not surprising in view of the derivation--
‘the criterion merely states that the flow is no longer laminar

Ao

‘and that outer electron trajectories start to cross near the

——
[’

anode. If (rc/d) ~ 1, one would not expect the derivation to
. be meaningful,

Below Ic the diode flow will be essentially one-dimensional
and laminar. Then one uses the Langmuir—Child impedance:

p——ny
g

o | I, o = 136 (q/r )2 (non-relativistic) (2.5)
[,mj .C. — c

Cad : . O

= 960 (d/rc)z' (ultra-relativistic)

where Z is in ohms, VO in megavolts, and the cathode is assumed
ol . *
{; to be a uniformly emitting circular disk. If (rc/d) is deter-

mined from

!J Te Znc. ® Yo . (2.6

i or / 2

{j (r _/d) ' 1.16 Yo . (non-relativistic) (2.7)

_ ‘ ~ . n-= ’
e’ , (VO)3;2 (cold beam)

we theoretically have a minimum impedance, "cold beam" diode;

{? i.e., the transverse electron kinetic energy should be zero,

* ‘
m@_ See Reference 2.3 for a discussion of relativistic planar space’
| charge flow. '




- or at least very sﬁall In practice, Equation (2. 7} works"
only if the current’ density is not too high--of the order of
a few klloamperes/cm2 or less. (The current density is
entirely determined by the diode voltage and gap spacing when
Equation (2.6) is satisfied.) If the current density exceeds

-~ lO4 A/cmz, the anode window vaporizes, forming a plasma.

which can both supply an ion current and also effectlvely close

the gap.

Let us first consider the case where the anode behaves as

a high-density plasma with a relatively sharp boundary, station-

ary over times of interest. The ions are accelerated back to the

cathode by the electric field, and we have the case of bipolar
space charge flow. As shown by Langmuir (Reference 2.7), the

constant in Equation (2.5) is now reduced. 1In the case of zero

work function for ion emission from the anode plasma, the elec-

tric field at the anode, as well as the cathode, is zero.
Defining '

jO = electron current density in absence of positive ions

je = electron current density with positive ions

and ji

It

positive ion current,

Langmuir shows (non-relativistically) that
1

(je/jo)l/2 ~ (%) f do (2.8)

o N\L/2
(a} (/E+OL. ;/w—[—.u)

1/2

, = 2ifle
Je \ 14

where

=

n (ni) = charge to mass ratio for electrons (ions).

e

e iy




E——=

The completely space charge limited case is g = 1, and numerical
2P d _ , : _

L; integration of the integral above then gives je = 1,86 jo. We

. thus see that the maximum ion current in the space charge limit
] | is N -
b ji = (1.86) jO (mi) ' (non-relativistically)
- ne

(2.9)
l . o 73 /4 2 o
-t AN -——-(E—) (bipolar flow)
:o ¢ -

B —

If one is interested in accelerating ions in the diode
(and recovering them through a hole in the cathode, for example),

the energy efficiency of the process in space charge flow, g,

ey
[RER

| - would maximally_be _
e o= f v, i dt/[ V, 3, dt
S _ 172
e

For deuterons, ¢ ~ 1.65 percent. Recently, Friedman, et al.,

iy

(2.10)

|
1
s d

Lo,

]

l} have performed preliminary experiments on ion acceleration in
the diode, using a laser to form a high temperature anode;plasma
.Ai‘ (Reference 2.8). Ion acceleration in the diode may indeed be a |
lj useful way to obtain high ion currents, providing impedance

- collapse of the diode and contamination effects from ions other
Lé than the desired specie are not serious problems.

{ﬂ In high-current diodes where the beam pinches (I > 1),

not only does the beam form an anode ion source aé discussed
. above, but the anode plasma appears to explode and the high-
L density plasma moves hydrodynamically'toward the cathode (see
= Figure 2.2). This effective gap closure gives an impedance that
lf drOps with time. Loda and Spence (Reference 2.9) have obtained
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an empirical fit of diode impedance versus time by assuming a
constant velocity anode plasma moving at typical material motion
velocities (a few cm/usec) observed with framing cameras.

One can also expect cathode plasma motion to close the gap,
but if the beam pinches appreciably, it is reasonable that anode
plasma motion dominates. These ideas of gap closure have led to
the use of hollow ring cathodes with pinched beams to extend the

time before impedance collapse. The anode plasma then takes

"longer to short the gap,'and dicdes with an initial gap of a few

millimeters can be made to hold impedance for 100 to 150 nsec.

. . . <
To summarize the above discussion, we expect for I ~ Ic

that the diode impedance will initially follow Equation (2.5)

2

o
I

‘ 136 (g_)
L.C. \AZ; ra;
When the anode becomes a plasma, the impedance should drop to
7 ~ I3 (9.__)2
VV e
o}
as bipolar space-charge limited flow is established. If the

ancde plasma moves hydrodynamically, the impedance should
further decrease as

. 2 2 "
Z « (aeff) = (d - vt)©

with v the velocity of the anode plasma. The time scales of the

"above phenomena depend on the current density or electron energy

absorbed in the anode,.




2.1.2 Parapotential Flow (PPF). When diode current

exceeds the critical current, the self-magnetic field causes
the beam to pinch and planar space?charge flow is no longer

an adequate approximation. The suggestion.of a parapotential
flow (along equipotentials) was first advanced by D. C. dePackh
(Reference 2.2).. Friedlandex, et al. (Reference 2.3), and
Creedon (Reference 2.4) have carried out similar calculations.
We follow Creedon's exposition here.

The basic assumption of the PPF model is that the impedance -

of the gap is essentially determined by self-consistent flow
along equipotentials within a region extending from the cathode
shank to a region slightly in front of the anode. If the anode
is an equipotential (conductor), electrons must cross equi-
potentials in a small region near the anode. The model has an
undetermined parameter since it does not treat flow all the way
across the diode. Figure 2.3 shows a sketch of flow lines.
Creedon approximates flow lines by cones converging to a point
at the anode. By assuming azimuthal symmetry and force balance
along each equipotential,

> v
E = - E’X E,

where E is the electric field and v is the velocity associated:
with the flow line, a solution of Poisson's equation gives an

expréssion for the diode steady-state current:

2

8500 y_ £n [Y + (y - l)]

I = m = - (2.11)
Ln (tan -im) - £n (tan %)

(s
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where v is the relativistic factor for the outer flow line
along I and the minimum angle flow line is 8 = §. It turns
out that the solution requires a current flowing interior to

8 =.§, which is termed the bias current, Ib; Specification of

any one of the parameters em, Y

r Or I, determines the other two.
m b E

Creedon suggests

Lo
tan § = I
Bm .= /2

Yy = 7Y, (corresponding to

anode voltage)

and, substituting in Eguation (2.11)

= 8500 (gg) Yo £al YO+I(Y02-1);5] . (;9-) '> 1 | (2.12)

I(PPF)
Equation (2.12) is also the solution which minimizes the bias
current. This solution would appear to-requiré flow along the
cathode shank, since the inner flow line is taken as emanating
from the outside edge of the cathode. Recent experimental data
of Ecker (Reference 2.10)shows reasonably good agreement with
Equation (2.12) (Figure 2.4). His investigations of emission
from hollow ring cathodes confirmed another aspect of Creedon's
parameter choice; namely, that & is essentially determined by
~the ratio of ro/d. 'By removing inner emission surfaces of the
-cathode, very little change in the steady-state impedance was

observed.

i B
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Figure 2.4

Comparison of theoretical [Egquation (2.12)]

and experimental results for impedance of
diode pinched flow. For this comparison,
experimental data were restricted to dI/dt = 0.
Experimental points correspond to various rc/d
and Vo values. :




The physical nature of the bias current in the anode-

cathode gap is not well understood at present. When the distance

(R - rc) between the cathode'shank{and the outer return conductor

(Figure 2.3) is
{electric field
potential shank

current flowing

current in this

line'tangent to
of experimental

discussed above

such that field emission would be expected
is approximately 2 to 3 x 10° V/cm) and para-

flow exists, the bias current is then simply the

‘along the inner conductor.. The minimum bias

case corresponds to a PPF with the ocuter flow
the outer conductor. Another point of departure
data from the converging conical diode flow model

is the recent anode current density measurements

that show approximately half of the diode current (~ 200 kA)

flowing outside

a few centimeter diameter center region of the

anode (Reference 2.6). According to the model, one would expect

a highly concentrated beam-spot size at the anode window.

In summary, the impedance predicted by the PPF model

(Equation 2.12)

does correspond well to experimental data and

allows predictable cathode design, even though certain details

of the model are not well understood.

2.1.3 Diodes With Applied Magnetic Fields. Several

empirical features of high-current diode behavior with an

externally applied magnetic field (BZ) fringing into the diode

have recently been established. Inasmuch as no self-consistent

electron flow models have been developed for the diodes with Bz

. » i * - L3
-and longitudinal electric fields, we limit ourselves here to a

summary of experimental data and some qualitatiVe remarks:

*

Several parapotential flow models for diodes with radial
electric fields and radial force balance have been extensively
studied (Brillouin flow, Harris flow--Reference 2.1).

.....
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1. There.is_an applied7magnetic_field level above which no

appreciable beam pinching occurs. Hammer, et al. (Reference 2.11),

 have empirically found that if

Bz Y rc _ '
= > (3) (8) | - (2-13)
e
pinching is inhibited. B, is the applied longitudinal magnetic
field value and Be is the maximum azimuthal self-field of the
beam. dePackh (Reference 2.12) has numerically solved the elec-
tron orbit equations, neglecting diamagnetic effects and electric
fields, and obtains the criterion-
B | 1/2 |
Z s> /T (I) | (2.14)
B Y
8
It should be noted that both of these equations involve the

parameter

I
(amps)
17,000 BL

and the longitudinal velocity, BLc, has to be "guessed."

2. The beam rotates in the diode, indicating the existence
of a macroscopic theta motion. The azimuthal acceleration results
from forces

Fg %‘(Vr By = Vg B
and radial velocity, of course, may result from either pinching
due to the self-magnetic field, or from radial electric fields
near the cathode. The radial electron field gives rise to dia-
magnetic rotation whereas the By field generates paramagnetic
theta currents. We discuss these effects in more detail in
Section 2.10.3. |




3. Thé current dénsity is non~unifofm and peaked in the
center when Bz é.Be, even when no appreciable beam pinching
occurs (Reference 2.10). A tentative explanation of this effect
is that the outer electrons have a lower longitudinal velocity.
Certainly this wduld be the case if the electrons roughly follow
field lines--the pitch angle of outer field lines is larger due
to the larger self field. When B, 2 By, the impedance is some-

what insensitive to cathode area whereas if BZ > B the current

6 f

density again becomes nearly uniform as the field lines "straighten

out." The diode impedance then follows Langmuir-Childs.
*
2.2 ELECTROMAGNETIC FIELDS IN FINITE CAVITIES

An understanding of the nature of the electromagnetic (EM)
fields generated by intense beams in finite closed conducting
cavities is fundamental to a description of charge production in
neutral gases and beam transport phenomenoclogy. For orientation,
we first discuss a simple guasistatic model to estimate EM fields
including the influence of cavity endplates, variations in beam
radius and charge/length, and density of the background charge.
Plasma effects aré included here only in terms of electrical
(space charge) neutralization., We assume the beam energy and
current profiles are specified as a function of space and time,
and do not consider coupling to orbit or beam envelope equations.
The immediate utility of the equations below is that one can
estimate EM limits on beam-transport efficiency for desired beam
‘and chamber parameters, excluding current neutralization effects
{(in this section). Exact solutions of Maxwell's equations for
beams penetrating finite cavities are given in Sections 3.3 and
3.4.

® " '
This section includes material reported in References 2,13 and

2.14.
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The geometry is shown in Figure 2.5.  Azimuthal symmetry is
assumed and the theta component of the beam current is taken zero.
Direct 1ntegrat10n of the Maxwell equatlon-

c 9t
gives
R 9E_ 1 R 2B
EZ = - f 3—- dr' - —c— f '5":&"—" dr! (2 15)
r r

6 — z ‘\\\\\
Perfectly

- window ‘ : [} - - conducting

walls.
Figure 2.5 Beam chamber geometry.

where the boundary condition Ez = 0, r = R has been imposed, In
the quasistatic limit, the displacement current in the calcula-
tion of By is heglected and the radial electric field is assumed
to be obtainable from the electrostatic (ES) potential. It is
thus required that the time for light to travel twice the longeést
chamber dimension be small compared to times of interest. The ES
potential can be determined exactly:




r

o 2 . _ .
¢ = f r' dr! fdz' G{r,r',z,z2"'")p(r',2") (2.16)
o - o . 7 B 5
with | KW
L
. W o I (ig-r_) 3 ()\nr')
Glr,c',z,2') = of Z o "R/ o R
. : R 2 ._Anl
n=l A_ [Jl(ln)] sinh (—R-—)
i
sinh (;B) z sinh 1%(2—2'), z < 2'37 B
(2.17) 23
. )\n . ' An
sinh (ﬁ—)(z—z) sinh = z', z » z' g%

The charge density is p(esu/cm3) and kn are the roots of Jo(x). o
An ad hoc approximation for E. is now made to avoid the complica- Kwa?
tions of Equation 2.16. The spirit of the approximation is to

note from the exact expression the tarm dropping off most slowly lg
in z, and then to find an approximate normalization factor. The

chamber radius R is to be restricted to a range such that the !é
z dependence is reasonably accurate for small z. This implies

that 1 < R/a < 10, and 1 < R < 10 length units, which is hence- "
forth considered the range for R. Assuming a uniform beam | Si
current density and that the scale variation in z for beam
‘parameters is large compared to R/2.4 near the endplates or ] -y?
compared to the beam radius "far away" from the beam endplates

(paraxial approxiﬂation), take N ,{

Er = f(Z) ;—2“]’_', r “g_a

2) o - -

(2.18)
£(z) 22, r > a o -




with £(z}) = 0, z =0 2 The beam charge/length (whlch may also
have a z dependence) is denoted by A, Equatlon (2.18) is exact

at z = 2/2 for » constant. Two cases of interest are

(1) 2 < R ey £(2) ® .‘EE.;’;;Z)
(2) & >R o (2.19)
- _.=2.4 z/R ,

flz) ~ 18— 2 £ 2(r/2.4)

_ (l-e *)

1, 2(R/2.4) < z < R~-2R/2.4

' -2.4 (2-z)/R
= 1€ ————, 2-2R/2.4 < z < 2
l-e

T e P — "
T
| l
S 1 ,
ey | |
r : ,l I
__Jhﬂ&,_z . (=E_) ! I
_ L o N T
(a) —— " (b) _
Radial field when 2 < R | ?%gm | | (E - 2%1)" % >> R

" Figure 2.6 Fields for a uniform electron beam
: in a closed cavity.




Returning to Equation (2.15), and using

Be=-g-I—§-r,r<a
ca
= %%, r=a

(1) | (2)
I~ N _m\
o . 5 90X f1 R\\ 4z(g~-z) , 2x da [4z(i-2)
(3) (4)
1 R\\ 4 Y 2 3T /1 R\ °
- 23 (-2— + £n (—)) = (2-2z) - =5 (-2- + Ln (—))
(5)
2 I ja
+ 2. = EZ ) . (2.20)
c2 a 3 _ .

If R <<%, a similar evaluation for EZ can be made using

Equation (2.19).

The terms of Equation (2.20) can be identified as follows:

(1) Electrostatic due to a variation in beam charge
density/length modulated by end plate surface

charges

{(2) Electrostatic due to a variation of beam radius with

'z modulated by end plate surface charges

Y

,M.__,
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(3) Electrostatic due to indﬁced‘(positive) surface

charges at the end plates which terminate the

field lines of adjacent beam (negative) charges.

(4) Changing magnetic flux due to current variation

(L dI/dt)

(5) Changing magnetic flux due to containment of

current within a time varying radius (I'dL/dt)

It is interesting to note that withouf end plates, {set
z = §/2), Equation (2.20) reduces to

Y,
BL
if not

radius

can be

' _ 2 3rf1 R g
EZ(O,Z,t) = =3 -é-ﬁ-('é- + Ln (—a-)>, (2.21)
) 'YL ) . . .
(no end plates)

= BLct—z_'
=1/ V1-g?

= average forward streaming velocity of beam electrons, .

referring to the beam head or tail and if a constant beam

with varying charge/length is assumed. Equation (2.21)

rewritten for the case Ib = 1F (1 - e—au)’ 1F = peak beam

current:

P .
_ (=}4 I (amps) (1 ~au
Bz} (V/em) = “5— t_(nsec) (2 *in R/a) © (2.22)
- Y BL r :
r=0




We have defined (a_l) as a two e-folding current rise length:
o BLctr = 2

For IP = 5x104 amps, t,. = 20 nsec, y = 3, R= 6, a =1, and

= 0.8, E, ~ 4x10° o~ OU V/cm.,

Br,
If we are within the current rise portion of a beam of
electrons (3Ar/3u < 0) streaming in the positive z direction
Equation (2.21) shows that E, is in the negative z direction;
i.e., in a direction to accelerate the front electrons,and is
opposite in_sign to the Ez field behind the head when the beam
emerges from a conducting endplate. We remark that if one
transforms to the beam frame in the problem with no endplates,
uses Gauss's law for the now electrostatic problem, and then
transforms back to the lab frame, one also obtains Equation (2.21).
To include displacement-current effects, second and Higher order
derivatives of A with z must be included in the electrostatic
problem in the beam frame. These'examples point to a sufficient
condition for the validity of Lenz's law--changing magnetic flux
induces an electric field tending to drive current producing
fields to oppose the change in flux; i.e., aEr/az be negligible

over the length of interest.

The effects of ions at rest can easily be included in the

E - |p, /P

above equations by replacing A by A(1-f_);: f ion electron|

e
is the fractional electrical neutralization.

If we take fe = fe(u), then Equation (2.20) gives for

constant beam radius:
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and E, reverses sign when

Sf ;
e _ (1 _ . ?_3_& ' . :
A 'é-_l'l—--— -—~§~ fe a | . P (2.24)

If both A and fe increase linearly behind the beam front, Equa-
tion (2.24) is satisfied when fe = l/2yi. Figure 2.7 shows
qualitatively the effects of ions upon E_.

o~

it fe = constant or a function of t, and the ions are again
assumed to have no z directed velocity, we see that
. 1 :
B = 0 if £ = = ‘ (2.25)

Zz e 2
Y1,

This is also the condition for radial force neutralization of the
primary beam electrons. Thus, if Equation (2.25) is satisfied,-
the primary beam electrons may drift in a force-free environment.

In other words, fe'= l/yi is a condition for beam "transparency.”

On first glance one might suspect that if the gas pressure
could be adjusted to maintain fe = 1/7% during a substantial
portion of the beam risetime, very little energy loss would occur
in beam transport. However, as discussed in Section 4, fe o l/yi
is the condition for ion acceleration, or, in other words the
beam may be-unstable: Physically, Equation (2;25) may be under-
stood by recalling that

= - 9% 1 "z
Ez - Dz c
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Figure 2.7 Sketches of Ez fields with and without ions.
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.where ¢ is the scalar potential and Aé is the z component of the-

vector potential. In a rising current region of the beam profile
8¢/Bz and 3A /at are oppositely directed. The presence of ions
such that fe ~ l/YL is the condition that 3¢/3z is shorted out
enough to exactly balance the inductive 9A/3t term.

Equatlons {2.21) through (2.25) have been derived assumlng a
constant beam radius with z and t. Let us return to Equatlon

{2.20) and look at terms 2 and 5, again neglecting endplate ef-

fects or restricting z to values about /2. Dendte these terms
by E

__ S  AB.c
Ey (0,2,8) = 2 [Ml—fe) 22 -g%} (2.26)
_ C .

If a=a(u), u > 0,

= 21 2a - 2
E; (0,z,t)y = 5 3 [fe 1+ BL]
- 2X 3a - i
T a Bu (fe 2) (2.27)

When £_ ='1/Y§, E; = 0, and we conclude that changes in radius
with u, or the distance behind the beam head, also lead to

2z
changes. If they do, the ion envelope velocity is, of course,

E_ = 0 if the positive ion charge density follows the beam radius
equal to the propagating velocity of the electron beam envelope.

To summarize the aboﬁe field discussion, we remark that the
fields have been determined in a quasi-static approximation which
requires that the time scale of interest be long compared to time
for light signals to travel twice the longest system dimension.




We have made an ad hoc approximation for Er to include endplate
effects that places a lower limit on the scale of z variation of
beam parameters. Our Ez expressions have been obtained for

r = 0; if we assume that E, does not vary over the beam radius,

our error at the beam edge, r = a, is using

1 _{R . ' /R :
= + fn (_ instead of (£n (— ) :
(2 2 e PR T 1a) r=a form

))rzo form

for terms 1, 3, and 4 of Equation (2.20). If Rié:a, this error.
is not serigus}.in_any case, we are overestimati'néj'Ez and any
beam distortion due to EZ would be less than our results. When
fe ~ 1 everywhere, the electrostatic contributions pf the EM
fields vanish, leaving only the inductive components [terms 4
and 5 of Equation (2.20)]. The endplates can now be ignored.

2.3 EXACT EM SOLUTIONS FOR BEAM PENETRATING AN ENDPLATE IN A
FINITE RADIUS CHAMBER (fe = 0})- A SUMMARY OF RESULTS

The discussion above assumes that the beam has already

traversed the drift chamber. Now to be considered are exact

solutions of Maxwell's equations for a.beam penetrating a chamber

endplate; sufficient conditions will be presented to justify
negléct of endplate effects. The material discussed is of
interest for low-pressure beam transport in ion acceleration
modes when electrostatic fields dominate, and it shows the im-
portance of finite chamber boundaries. The details of the

calculations are given in Section 3.4,
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An end plate has two effects on the EM fields. - One, -

" primarily electrostatic, is to reverse the direction of EZ near

the end plate and short out the radial electric field. The other .
is to generate a radiated field component as surface charges are
accelerated by the beam. This field gives rise to precursor
fields traveling at the velocity of light and, under certain
conditions, to oscillatory fields near the beam front. The

geometry for the calculations is shown in Figure 2.8. .

Electron

N

Beam front Y *—
zg= Bct

Precursor front
z'= ct

|
B N

TN

- Other ///

cavity
end plate

Figure 2,8 Open ended pipe geometry.

A sufficient criterion for neglect of field oscillation is
that '

\/(Ct)z—zf2 >> R/2.4, 1 £ R £ 10 .length units (2.28)

‘where zf'is the beam front position. Another way of stating

Equation (2.28?'13 that the light signal must have traveled "far

- beyond" the beam front. One would therefore not expect this




effect to be important for low-energy beams. A typical oscilla-
tion amplitude, for example, would be -103 V/cm with 5x104 A
I-MeV beam, 20-nsec risetime, and l-cm radius in a 6-cm-radius

pipe.

The reversal of the sign of E, , as compared to the case
without end plates, is perhaps the most important influence of

the end plate, since this effect can seriously degrade the beam

energy and reduce the front velocity. The beam "blows up" radially,

resulting in large energy losses. Figures 2.9, 2.10 and 2.1l show

direction penetrating an end plate. 1In order to illustrate the
details of the ES field near the end plate, an undistorted "slow"

*
beam was chosen. The parameters are

By, = 1/30
tR = risetime = 0.1l nsec

R=6cm

a=1cm (Gaussian radial current #ariation)
¥ = peak current = 1;77x103 amperes. - {(The ES field

scales linearly with peak charge/length.)

The reversal of the sign of EZ occurs at the crossover distance,

z,s and can be estimated from

z, ~ [(R/2.4) £n 2y + vzel/ (v + 1), (2.29)

In order that the field calculations be self-consistent with
beam motion, v/y-1 << 1. Section 2.10.1 discusses beam front
motion when this condition is violated. Scaling of field values
for other beam parameters is discussed in Section 3.4.1.
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where z_ is the beam front position (=~ time in nanoseconds in the -

£ |
above example}. Equation (2.29) is wvalid for a "blunt” beam when

Z X 2R/2.4. 1In order to neglect the electrostatic endplate

effect on the beam fields, it is therefore reguired that

Ct/Y , Zg, z > R/2.4 (2.30) 1]

. ; o : : b

_ When R > ©, one can alsoc derive a manageable expression for o
the EZ field. A straightforward electrostatic image method L

calculation (Figure 2.12}) gives for the potential, ¢, on axis

S o i

[
L~z b
) i
$p(z,L) = % {22'- li(L+z)2 - (L-z)2 - 222:| + f dw a?"+w2
a . 2 (,.—--
el
Iz
- f dw V a2 + mz} g
Z2
i

= _lf {22(2L—z) + (m-z) VaZ + (1-2)2 - (1+z) Va2 + (L+z)2
a : '

+ 2zV 2 + 22 + a"2 [£n (L-z + ‘-/a2 + (L-z)z)

+ £n (z+ Va2+22)-£n (°a2+zz—‘z) i{

\ (2.31)
- £n (L + z + \/a2 + (L+z)2):’} '

. - .
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B where A is the charge/length and is assumed constant from z = 0 to
[jh) z = L. The charge density has also been taken uniform in radius

out to r = a. The expression for EZ follows directly from Equation

{Q (2.31):
{ E = - %
B 4 Jaz
t;- _ = - Z% 2(L-z) + 2Va? 4+ 2% - Jé2 + (L-z)? - Va? + (L+z)2%
- a . _
[ | (2.32)
1% We see that E_ reverses sign and the potential well depth is
maximum for z = zc given by

(ﬁ ' (L—zc) + Vv a2 + zcz = % [\/a2 + (L-—zc)2 + Va2 + (L+zc)2]




2.4 CHARGE PRODUCTION IN NEUTRAL GASES

. For the purposes of a discussion of charge production
processes, one needs to realize that typical intense beams in
neutral gas-filled drift chambers have electrostatic (ES) space
5 6

to 10

neutralization and inductive fields of the order of a few'keV/cm

charge fields in the 10 V/cm range before electrical
after fe ~ 1. As shown previously, the ES fields are primarily
longitudinal near the anode window and the downstream chamber
endplate, and primarily radial within a region of length = 2
(R/2.4) away from and interior to both the endplates. Depending
on beam energy and current risetimes, the ES field near the anode
window, which is always in a direction to degrade the beam
kinetic energy;may slow beam electrons down, sharpening the
front, causing the beam to "blow up" radially, and effectively
decreasing the current risetime. We then have a situation where
a relatively sharp beam front precedes an ion charge neutraliza-
tion front.* This process effectively moves the anode down the
chamber, maintaining a primarily longitudinal space charge field
behind the beam.front until,.é.g.,.fe ~1/2 YE ih the case
discussed in Eqguation (2.24), and then primarily radial until
_fe ~ 1. Both the value of the ES field and its direction depend
on the "sharpness" of the beam and ion fronts, and may be inferred
from Sections 2.2 and 2.3,'using a superposition of fields from
an electron and equivalent ion beam. As the beam collisionally

ionizes the gas, the secondary electrons move out of the beam

channel, leaving positive ions to neutralize the beam space charge

over a time scale TN* When the ES fields are primarily longi=-

tudinal, the sze force accelerates them out of the channel, or

when primarily radial, the electric field does.

*
These remarks are amplified in Section 2.10.1.




rrrrrrrr

During-TN < t <-t ' t the current rlsetlme, the electric
field is inductive domlnated longltudlnal and drops to values
of the order of a few keV/cm. We argue below in a charge produc-
tion model that it is thlS inductive electric field which has a
major effect upon charge production through electron avalanching.

The exponentlatlon of secondary electron density during avalanch—

- '1ng causes the gas to break down, giving rise to the phenomenon
' of current neutralization.

The plasma charge density may also be enhanced by the in-
fluence of ES instability-generated electric fields if the beam
parameters (temperature or velocity spread) and plasma density

are such as to allow rapid growth of instability oscillations.

We defer a discussion of instability heating to Section 2.8.1.

4 _ 2.4.1 Dlrect Colllslonal Tonization. Good working values -

i, for the impact ionization cross section (0 ) for beams with

e energy in the MeV range are given in Table 2.1 (Reference 2.15)}.

TABLE 2.1

TONIZATION CROSS SECTIONS
2
Gas ' 0ion (cm®)
B _ _ H - 10-19
o -2 ~19
- He 10
Ne flg_
~19
-18
-18

10
10
10
10

A

Ny

i o : Air

"YW ol NN
L

[\ I 0

(1 -~ Using the cross sections above, the time for attainment of

electrical neutrality, Ty’ can be estimated. If we assume

,,,,,,




singly charged statlonary ions and that the secondary electrons

escape “1nstantaneously from the beam channel the ion charge
density, Py is given by

dp.

i ' 16 .
3T = 3,53 x 10 Jp %ion P
T _ (2.34)
= 3.53 x 10%® B (c/10) o, P
- . 2. ion
Ta :
with _ _ , : _ .
jb = beam current density (assumed uniform) (statamps/cmz)
I. = beam current in amperes
= beam radius (cm)
P = gasrpressure in Torr

Integrating Equation {(2.34) using Ib =g (t) I-nglP = peak current

in amperes, .
t

: . a“(t")
‘ < '
The electron beam charge density, Pe’ is
- ¥ _g(t)
Pe = L2
(10) wa BL
s0 0
e ) P
- 3.53 x 101® 5, cp (t ) dt - (2.36)
_ ion g(t) () :

~The time Ty to attain fe = 1 can easily be obtained from
Equation (2,.36) for the linear current rise case (g(t) = t/tr)

when no appreciable change in beam radius occurs over Ty:




i

8 J

s
i
\_w/

. 0.7 Gion(air) .
™ (nsec) _ BL.P(torr) gl', Onm(gas)_ : (2.37)

Let us now brlefly examine the assumption that secondary elec~

trons 1nstantaneously escape from the beam channel The secondary
electron orbit equations are ' .

oa - . e - _2Z 6
ge () = m_ (Er c )
B - | (2.38)
_ B -
d : _ e Vete
@ vy o= ﬁ‘(’%* S )
where v, (v,) = radial (longitudinal) velociﬁy,component-of
secondary electrons. The energy equation is
d? _ _ a ' f
ra 7 (B, v, +E V) _ (2.39)
_ m_c

These equatlons can be solved analytically with spec1f1ed fields
only in a few cases.

First, we note from inspection of Equation (2.38) that the
radial acceleration will always be outward {(positive) until

v

_ z
. = = (E_/By) | (2.40)

B

It

If the beam charge density is uniform in radius,

1-£

Ujltlj
<@ B
|
.
k

Thus, since BZ < 1, the secondary electrons will escape to
"infinity" unless .

f > 1 - BL (?.4;)




If EZ A2 0-(-fe Az I/yiz) and Er' Be are only functions of r,
“Equations (2.38) and (2.39) can be solved analytically for the
turning radius, #t' at which the secondary electron reverses
radial velocity. Denoting quantities referring to the initial

- coordinates and velocities of secondary electrons with the
subscript "1," ' o

r . ) o : ) . ~

. 2 _ -2 26 . _ e o ' .u: '
(.YVr) ;= (Yvr).l__ - = f dr’ [Yl —> f E_r(r' ),dr] E (x")
:a' o T, : _ o€ rl' ) | L
o x , ‘r' : ' _ ' E
= T ' ' ﬁ " -1 : :
+ - c2 f [Be(r.) f Be(r )dr ] dr o ‘ | |
0 N ry ry o . .
. r B Be ’ - -
- 2 ' '
f (yvz)l 3 .(r ) dr _ _ (2.42)
R | |
and - o r kJL
Y(r) =y - ;n—e;? f Er(r')dr'
' . e} Ty o ]
r (2.43)
= - = 1
YV, = . ('YVZ) L 5 j By(r')dr
: m_C
o] ry

Let us evaluaté Equations (2.42) and (2.43) for Y, = 1 in the

uniform beam case, assuming rt # a, the beam radius. We obtain

' 2
r
yvz = g—,—y—e %——%-F,Cn-g-
m_c 2a ]
o "
2
e\ e 1 Ty r
Y = 1+.1-—)sz] s (- +mE |
L m_c 2a




These two equations can be solved for r,:

2 (1-f)) - 2
r = aexp x{—=— - 1 + (r. /a) - (2.44)
t 2 2 1
v (1-a7)
with ' 1-f
o = e
B
If we take a 1 MeV electron beam, v = 3, fe A l/yz, and
r, = a/2,Equation (2.44) gives r, ~ 12a. 1In other words, when

chamber radius R is < 12a, the secondary electrons would hit
the wall (at relativistic velbcities). If we blandly ignore
the effects of E, when fe > 1/Y2, a criterion for secondary-
electrons to be lost to the chamber wall is

2(l—fe). r 2

2fn R/a < +-a.l- -1 (2.45)

v(l—az)
Numerical orbit calculations are required to more carefully
justify the assumption that secondary electrons escape from
the beam channel bver times short compared to Ty when fe <1,
Experimental observations of beam envelope profiles using ™
from Equation (2.37) show that the assumption at least gives a

gbod working estimate of space charge neutralization times,

2.4.2 Electron Avalanching and Gas Breakdown. Relativistic

electrons create secondaries with energies in the few electron
volt range. The ionization cross-section for further ionization

-16 cm2 range and, if the beam

by these secondaries is in the 10
induced electric field is large enough to accelérate the second-
aries to ionization energies for the background gas atoms in a
distance of the order of a mean free path, theée secondaries

create more electron-ion pairs--the condition for gas breakdown.




In order that avalénching influence plasma generation in the
beam channel, the radial electric (space charge) field of the
beam cannot be toc large, or in other words, the radial electric
field must be low enough to keep the transit time over a distance

of the beam radius not significantly smaller than the mean

ionization time for secondary avalanching.

Iif fe @‘lithis condition is fulfilled. Moreovér, when A
fe > 1/YL2 the beam is in a pinching condition,'so the space
charge blowup is terminated and the beam radius can be assumed
roughly constant in avalanche calculations. The chaxge.production i
equation for secondary'electrons can be written from the Townsend =

discharge theory as _ —

It - ¢ 2 L v > R A (2.46)
T a . i . '

R e e e

collisional avalanche transport e,
ionization term term . {h

where np is the secondary electron density/cm3

I(t) = the beam current in amperes
a = the beam radius in cm,
ti = mean ionization time o

It

-1 ]
<V, > o- <Y > : ' L
vlon va _ . _

= ionization frequency

v,
132- = electron oxygen attachment frequency in air
<> denotes a value averaged over the secondary
electron velocity distribution and the back-

ground gas velocity distribution {?

I' = the particle transport current out of the :

volume element due to the electric field 7

(mobility current) and diffusion ‘ ,mlf
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o = s5.8x 107 p (Torr) air (NZ)}'number of ion pairs/

8.8 x 1015 P (Toxrr) He - '_cm3/sec/amp/cm2

' : " : *
and o is obtained using the ionization cross sections in Table 2.1. The

. mean ionization time is a functlon of the E/P (electrlc fleld/pressure)

ratio and since E varies with t, t; = t; (). We can integrate -
Equation (2, 46) assuming a. constant,and neglecting the transport term,
i _
AR L - ft_@t_'
e t0 ti t | ti .- to ti'
n (t) = — e  I(t") At + n (t)e (2.47)
P Ta _ p o
: | to .
np is the'secondary electron density at t =.to.- If we break up
the time intervals into segments with approximately constant
electric fields, ti = constant, and if I = 1P t/tr, a linear
current rise to a peak current IP,

5.8.x% 1017 P (Torr) IP (amps) (ti)2 t/ti _
n_(t) = 5 T e -t/t.-1
P ' T (a(cm)) S Tr
t/t, :
+nlede T T (air) (2.48)

with all times in seconds.

If t << t. (only collisional ionization),
(air) (2.49)

¥ Equation 2.46 neglects recombination effects. ' These are not
usually important at pressures corresponding to high conduc-
tivity breakdown.
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The mean 1onlzatlon times have been plotted as a.function E/P
from the data of Felsenthal and Proud (Reference 2.16) by J.
Creedon {Reference 2.17). Figures 2.13 and 2.14 éompare air and
helium, and Figuré 2.15 shows the mean ionization time in air
plotted as a function of pressure for two typical electric field

values.

A model of charge production is now argued to estimate

- breakdown times., Secondary electron orbit sketches and typical
field magnitudes are summarized in Figure 2.16:fof-a beam in a
drift chamber. The figure'indicatés‘that beam—drivenhelectric
fields vary sevéfal orders of magnitude from the time of front

arrival to gas breakdown time, t and that the highest fields

Bl‘

exist for t < TN: In fact, these fields are usually sufficiently

high at pressures of interest for efficient beam propagation

(0.1 to 1 torr) that the secondary electrons become relativistic

over distances of the order of the beam radius and the ionization

cross section drops to values around 10"18 cm?. ‘This can be

compared to typical Townsend discharge theory where cross sec-
tions are used for electrons with energies up to the kilovolt
range (™~ 10”1 cm? cross section). Moreover, until £, =1 is
achieved, the secondary electron motion is primarily radial and
the flow is out of the beam channel, Thus, it seems reasonable
~to neglect avalanchlng in the beam channel until f = 1. When

t > 1 |E| = E = 103 V/cm, (typically), we conSLder avalanche

Nl‘
. effects to be important and the electric field is inductive.
With these arguments in mind, an ad hoc charge producticn calcu-

- lation procedure for high current electron beams is outlined:

*The reader is cautioned about extrapolation of their data to
off-the-curve points, particularly toward the high E/P values.
These authors carefully delineate the validity of their
measurements.
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TN; the time for'fe ~ 1, is calculated from collisional
ionization (TN (nsec) = O.T/SLP (torr} for air).

b. From the time the beam front arrives at the point of
interest up to t = Ty, secondary electrons escape
instantaneously out of the beam channel; no significant
electron avalanching occurs within the beam channel. *
the breakdown time,

c.. From t'é TN to t = tB'

E  (V/em) =~ 217_(amps) (1/2 + £n R/a)
Tz t. {nsec) '

assuming a linear current rise,

= chamber radius
a = beam radius
tr = beam risetime
Using E_ above and the pressure of interest, t.y the
mean ionization time (Townsend discharge theory), can

be determined from Figure 2.13.

d. Neglecting the transport term and assuming Ez constant,

in Equation (2.48) gives

P /t, (t=1)/t,
nes.(t-TN) = 05_1_5(_1-_) e N) l(tj_+T

T ) = (t 4+ T.)
Ta

r N | N

i




L . s _
e, Breakdown is defined as n, (tB) = an (tB)
Empirically determined ¢§ =~ 226 '

f. tB is obtained from the transcendental equation:

{(t.—-1..)/t. , _
e B N L 80 1 1
tB_ P (torr) tiBL (ti + TN)

for air (2.50)
(All times are in nanoseconds.)

Breakdown time calculations from the above are compared
with Yonas and Spence data in Table 2.2 (Reference 2.18). The
beam parameter range over which the above model is relevant
is not clear, inasmuch as detailed breakdown data exists only
from the Yonas and Spence work. It is quite likely that widely
different beam parametérs would require adjustment of the charge

multiplication factor, 6.

TABLE 2.2

BREAKDOWN TIME CALCULATIONS

. . .
P "N t (nsgc) ) (nsgc) _
(torr) {nsec) ' {(nsec) Calculated Measured
0.1 13.0 1.0 20.7 20
0.3 4.3 0.47 7.8 10
0.5 : 2.6 0.34 5.1 5
Agreement is within
experimental error
Parameters
IP. = 4 x 104 amperes a2 = 2.5_cm2
ftr = 20 nseg BL = 0.54
E, = 2 x 107 volts/cm vy = 1.5
R = a-

48
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After gas breakdown the plasma becomes a good conductor and

the electric field typically drops to the few hundred V/cm range

or less. An estimate of further ionization can then be made from

dnp(t) GEzz ,
A t > t - {2.51)

dt AW, ’ B
ion

where ¢ is the'plasma conductivity after breakdown and AW, is
the energy required to create an electron-ion pair = 33 eV/ion
pair = 5.3 x lO"ll_erg/ion pair. Equation (2.51) would, of course,

apply until the gas is fully ionized or the driving field becomes

negligible., 1In Section 2.6 we estimate the E, of Equation (2.51).

2.5 PLASMA CONDUCTIVITY

In order to use the concept of conductivity in a meaningful

 sense .and thereby simplify the plasma dynamics enormously, we

have to carefully characterize the plasma parameters and the
electric fields; an intense beam, self-generated plasma system
typically has electric fields varying several orders of magnitude
over the beam pulse width and, of course, the gas changes from an
unionized state to perhaps a fully-ionized, heated plasma. We
are most interested in the necessary conditions to use a scalar,
dc conductivity——the simplest case.

Before the gas is fully ionized, the conductivity contains
contributions both from electron-neutral and electron-ion
collisions. Aﬁ often-used rule to calculate the effective con-
ductivity is |

1
= + - | _ (2.52)




with :
Op = total conductivity
Og i = electron—ion conductivity
’ _ _
Og n = electron-neutral conductivity
, _

npe2 1 w 2 1
0‘ . . - = __E-—
i,J m, vi,j 41 vi,j

_ a _ .
- 2.53 x 108 —B— (sec”h),
i.3 ‘
where np = plasma electron density (cm_3)
'wp = electron plasma frequency
Vi o4 = momentum transfer collision frequency (sec_l)
rJ for (i,j) 90 degree scattering to direction of .

electric field.

(2.53)

We list several restrictions upon use of Equation (2.53) which

have to be considered in intense beam applications.

1. v, . > o (dc approximation), W, = maximum angular

r
frequency of EM field components with "appreciable" amplitude.

Otherwise, electron inertial effects are important and

2
w v,

P 1,

- i

g = q(w) = I PR
i,3] 1,7

*
. . -1
10

]
2 4 w2 (v, .)

(2.54)
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Typically, W, = EW ~ 108/sec. The beam pulse width is t_.
: . o p
2. vy 3 > W, (scalar approximation),'mc ~ cyclotron

r

frequency of secondary electrons in magnetic fields. Otherwise we

must use a tensor conductivity and, for a Lorentz gas,

(2.55)

o 3
l+(c)

SV

1,]

‘where dl(o”) is the conductivity perpendicular (parallel) to the

magnetic field lines, o is given by Equation (2.53). When no
external magnetic fields are applied, the "cyclotron" frequency
5 field (includ-
ing current neutralization). This field is zero on axis and a

is the Larmor or betatron frequency of the net B

maximum near the beam edge. When beam transport efficiency is

high, the net current is typically such that Bget {r = a) X few
kilogauss. If we take Bget 22 kilogauss, W, 23 x lOlo/sec.

The collision frequency above has been tacitly assumed to be
strictly collisional, either electron neutral or electron-ion.
When the beam-plasma system is unstable to longitudinal electro-

static oscillations, an effective collision frequency, Vv can

eff’

be used in weakly turbulent plasmas to give a so-called anomalous

conductivity. This collision frequency represents wave-particle

scattering and may be orders of magnitude higher than ve q °F
. I

v If the inStability wave energy is dissipated by collisions

e,i’ _
rapidly enough so that non-linear regimes and particle trapping
do not occur, Veff is taken of order of the fastest linear
instability growth rate,Im(w). We therefore additionally require

for validity of Equation (2.53) :




3. Imf{w) < Ue,i (no significant turbulentleffects)
where Im({w) can be due to electron-ion ES instability modes (ion-
acoustic or Buneman) or electron-electron ES modes. These modes
are discussed in detail in Section 2.8.1. If ny R 1015/cm3,
Te = plasma electron temperature 210 volts, and if the electron
drift velocity, Var is less than the electron thermal velocity,
Vs the criterion (3) can be assumed satisfied for a nitrogen or.

air plasma.

The maximum allowable electric field in the plasma for
validity of Equation (2.53) is limited by the condition that
V3 <€ V. i or

vd-(cm/sec) <€ 6 x lO7 Vﬁe (eV) (2.56)

For typical beam parameters at high transport efficiency pres-
sures (~ 1 torr), the plasma electron temperatures are a few
volts or so in which case Equation (2.56) gives Vg < 108 cm/sec.
Another criterion for the maximum electric field strehgth
approximately equivalent to Equation (2,56) for a highly ionized
plasma refers to the well-known Drelicer field {Reference 2.19),

E :
c

-12
2% 10
E (V/cm) < Ec = T 7z np (2.57)

e

where Z is the ion charge state.

When E > Ec’ the plasma electron velocity or energy ceases
to be collision limited and we have what is referred to as elec-
tron runaway. The secondary electrons then form a high energy
tail or beam. Electron runaway would not occur in the presence

P




of a transverée magnetic field, but presumably could be important
near the axis of a By field system where B, ~ 0. If n, 2 3.5%101%/
cm3 P 2 0.1 torr, fully ionized, Te ~.10 volts, 2 = 1, (conditions
for rapid gas breakdown and good beam transport), Equation (2.57)
gives EZ < 700 V/cm. Such a field would correspond to plasma |
current densities, jp, of 2 7 x 104 amps/cmz, assuming g = Ge,i
and.Te 2 10 volts. The highest beam current densities yet

attained in the drift chamber are ~ 10° amps/cm2

. Thus, the Ez
field limitation for Equation (2.56) will usually allow use of a
scalar conductivity giving essentially complete current neutrali-

zation of the highest current density beams.

Returning to Equation (2.38), we obtain expressions for

g and Og i The electron-neutral collision frequency is

e,n
defined as

r

ve,n = No <bmv>- e No <bm> vt'(vt > Vd) (2.58)
where v is the electron velocity, No is the background gas neutral
density, <0~ is the electron distribution-averaged momentum
transfer cross section. Equation (2.58) may be rewritten using

Equation (2,56) as

-1 24 — ‘ |
ye'n(sec ) ~ 2.1 x 10 \om> /Te (eV) P (torr) (2.59)
giving
o . n
o n(sec—l) ~ 1.2 x 10 1° P 5 (iorr) (2.60)
e <o > /T
e
. _ : -15 ~-16 2 Y
Typically {bm>-& 10 - 10 cm™ , and may be obtained for

various gases from electron mobility measurements (References
2.20 and 2.21). The electron-ion collision freguency for 2 = 1

ions (Reference 2,22) is

I




-1, . -5 -3/2
ve,i(sec ) & 6 x 10 | np T, {2.61)
. giving
-1 o~ 12 3/2
oe'i(sec ) 4.2 x 10 T, : (2.62)
The two conductivity components above are equal when
n
P~ 107% (7)?2
N e
o
- ~ 14—16 2 ' .
assuming <bm> ~ 10 cm . Thus, from Equation (2.52),
g =~ Ue’i if
n -4 2
(mR) > 10 (T ) (2.63)
NO e

As an example of the application of the above remarks, let
us estimate the conductivity after gas breakdown for the Yonas
and Spence beam parameters of Table 2.2. We obtain the electron
plasma density at breékdown from our charge production model
[np (tB) = 200 n, (tB), n, = beam electron number density] and
assume a temperature of T, 10 volts. From Eguation (2.63)
np/NO & l0"2 is the equal O 3 and-ce 0 plasma electron to back-

r ’
ground gas density ratio. The calculations are given in Table 2.3.

TABLE 2.3

CONDUCTIVITY ESTIMATES AT GAS BREAKDOWN

,;ﬁP (torr) NO,(cmHB) 2E,(t5) np/No ot =~ tB)(sec_l)
0.1 o35 x 10 4x10tt ~107t 0w O s ™ 1.3x10%%
1.0 3.5 x 10 4x108 ~102 o-6 s2s~o o

e,i e,n

~ 6.5 x 1073

4 :
P
4




. These esfimates, of course, suffer from the unCertaipty in Te’
but the conclusion that the conductivity at 1 torr is lower than
at 0.1 torr is supported by experimental data on plasma current
I" . decay rates (Reference 2.23).* The change in ¢ after breakdown
™ will depend on the valueiof olt = tB), or equivalently, the power

{T input to the plasma after breakdown. At p = 1 torr, we would

expect the plasma ionization to continue and the conductivity to
) increase somewhat. Detailed measurements of plasma densities
Lj . and temperatures are needed to verify these remarks.

1. - .
LL A plot of electron drift velocity in air as a function of
E/P for an electron-neutral dominated collision frequency is

IT © given in Figure 2.17, from which Oo , Can be inferred:
s ' - d

7 vdn

{ ' o ~ 1.4 x 10 Wﬁ'ﬁ“ (2.64)

i e,n

L/J 2.6 CURRENT NEUTRALIZATION

We have already discussed space charge neutralization and
its influence upon the electric fields._ When fe > l/Y2 {oxr 1/2 YZ'
depending on the variation of fe with space and time behind the
beam front), the E, field is in a direction to drive secondary .
electrons back to the anode, i.e., oppositely to the beam elec-
-(} trons. The radial electric field componeht is still large, how-
A ever, and the secondary electrons are driven out of the beam
$? channel until fé ~ 1., After fe ~ 1, the field is inductive
{ (L dI/dt) and we argued in the charge production model the use of
i the inductive field for electron avalanching calculations.' The
E; ' plasma electron "supply" is not lafge enough to provide a sub-

stantial secondary electron current until gas breakdown occurs,

*
If plasma parameters at breakdown are such that ¢ n always
- dominates, this conclusion is, of course, also trué.
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Vﬁwj ~ after which time the net current in the chamber is held more or

!Lé' less constant over the reméinder_of the.beam pulse. In other
words, the beam current may be neutralized by the plasma return

{i current. We argue below a simple model to estimate the degree

- of current neutralization for beams injected into a neutral gas.

T? _ | ‘ _

Li If the gas is a good conductor after breakdown, as is

usually the case, the time scale for further'chargés in the
maghetic field, assuming a constant conductivity, is the magnetic

diffusion time, td:

a7 ca2

t (2.65)

ta (sec) =

c

o in'(sec_l). This is the time scale for changes.in the magnetic
r?_' field to diffuse a distance of the order of the beam radius, a.

b When the gas breaks down, the beam current has reached a certain

pp— "~ value depending on time of breakdown and has an associated B

j;e) value. The magnetic field after breakdown changes from thiseBe

- value over a time scale of td' "TE on R 1013/sec, e.g., a = 1 cm,

JW% Equation (2.65) gives td 2 130 nsec. Thus, if td_> tp, the beam
: pulse width, the magnetic field and net current remain approxi-

‘TE mately constant and equal to values at breakdown. The magnetic

et field is then "frozen" or clamped and the plasma return currents
“@l adjust to the changing beam current to keep the net current

ir constant. An estimate of Ez driving the plasma return current

for t > tB is

I (t) - I, (t.)
B A~ b b' B

_ ) !
A : .

> .
3 (t Z tp) - (2 66)

where Ib = beam current.




We define the fractional magnetic neutralization, fm:

I = 1, (tg) |
fn = 71 R O (2.67)

IP-is the plasma return current over the beam cross section.
For strictly inductive electric fields, fm < 1. An estimate of
fm can be made from the charge production rules of Section 2.4,

which give an estimate of tB’ and therefore Ib(tB).

In order to achieve high current neutralization, we need

to fulfill two conditions:

1. The conductivity at breakdown, ¢

must be high
(tg > £) o

BI

2. Breakdown must occur early in the pulse (tB < tr).

In the 0.1 to 1 torr pressure range, the second point is usually
dominant.- At higher pressures current neutralizaticn_will drop
because-cB decreases. These remarks are summarized in Figure 2.18,
where we see that fm ~ 0 at 0.1 torr, even though o

B
than o at 1 torr (refer to Table 2.3). :

is higher

Yonas et al. (Reference 2.23), have utilized the ideas
discussed above to approximately calculate the net current versus
time for a giVen beam~current profile. They break up the beam
profile into a current-rise region, a "flat top," and a decay,
and use the magnetic diffusion equation with this type of an
. approximate soufce'term (beam current) to calculate the net .
current. Figure 2.19 shows an example of their calculated net

currents versus measured net current.
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Figure 2.18 Conductivity versus time after beam
' injection sketch for two representative
pressures. :
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Figure 2.19 Comparison of measured and calculated
net currents (Reference 2,23).
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We now present a summary of an exact EM calculatiqn showing

[
5\__-__.“

current neutralization. Several authors have discussed the

current neutralization problem under various assumptions (Refer-

ence 2,24). All calculations assume a constant conductivity
plasma (except, recently, Swain, Reference 2.25), an assumption
which therefore restricts them to injection into preionized

—N
S

plasmas;'i.e., they completely miss the point for neutral gas
current neutralization phenomena discussed above. The most

i,

[N

- practically relevant calculations for preionized gas injection

are given in Section 3.3 whére a finite risetime beam in a finite

" b]
i& __-.-NH._J

radius chamber is considered. We summarize below the results
of these calculations, -

2.6,1 Beam Injected Into a Preformed Plasma. We make the

following assumptions in the calculations:

|
Lomnd

Imf\ a. Azimuthal symmetry

Uad b. B, = 0, jbe = 0
{? ¢. Undistorted beam moving at constant velocity, BLc = V.
{3 d. jbz = jp = beam longitudinal current density
’’’’’ = £(xr) g(u}, u = y(vt - z).
1% e. g{u)= (l—e"&u), (d_l) is the e-folding current riselength.
jﬁ-_ Equation (3.64) of Section 3 gives us the vector potential
_{ A= Az, from which we obtain Be = - 3A/9r, and the ﬁet current
o - < 5, (%2 0)
In(r,u) = Fr Be (r,u) = 41TClr Z HnGn(u) J A > {2.68)"
pr— n=1 1 [( n J .
B
o ~where Jo (Jl) is the zero {(first) order Bessel function, ln are
”@ the roots of Jo(x), R is chamber radius, and Hh is the radial
e form factor:
¢




. 2 .
, -{(A_/2R ) , .22
1 R n b ~-b%r
H = - e for £(r) = C(C.e
n 2.2 1
- 2R"b 'n :
R > %,
. a An . -
- 259 (—ﬁ ) for £ (r) = C.H (a-r)
n

H is the Heaviside function, and for u > 0,

....Elu

[ *n ’ 1 ae e~ OH
Gn(u) =z 1 - = ( = ) - S
a=n, ng2 JE - oty
| 2
A
- (3)
2moB_ Y
. L'L
C
Tll = ‘/g_k
n, = VE+k

Equation (2.71) assumes & #* n,. We note from Egquation (2.71)
q . 1

that when u » 1/q, 1/nl, or, in other words, when we are far

behind the beam front In -+ Ib'

(2.69)

{(2.70)

(2.71)

as it should. For orientation,

we mention a typical ordering of the basic system lengths for

injection of a 40 nsec risetime, 1 MeV beam into a highly

 conducting plasma with o = 1014/sec. Then defining

dYLBL c tr = 2 gives

a = 6 X 10-4 cm"'l
k = 6 x 10% em”?
_ -5 -1
n, =~ 8 x 10 kn/R cm |
n, ~ 2%k = 1.2 x 102 om t
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Rather than further discussing specific examples in detail here,
we simply remark that the beam-tube plasma has three ofdering
lengths, ao, Anc/R, and k, whose relation to each other substan-
tially affects the form of Gn(u). (The value of An/R at the

cutoff index in the summation is denoted by Anc/R.) Some limits
‘are:
. A 1
1. low conductivity + k = ZWUBLYL/C < -5 = 2,4/R

The variations in u are now geometrically determined with scale

length (Al/R)*l. Plasma return currents substantially flow in

the chamber wall.

c

*n

R

2. high conductivity -+ k >

‘Plasma return currents are now essentially contained within a

skin depth (k)“l around the beam channel.

Within these two cases are subcases depending on o. The "blunt"

beam case is o > Ny and the "slow risetime” case is a < ny -

The net current expression, Equation (2.68) above, gives
exact EM solutions for the constant conductivity case if the beam
is undistorted. These approximations are realistic only if the

conductivity at injection is sufficiently high to keep the

electrical fields small enough to avoid beam distortion and

substantial plasma heating. If we are interested in transporting

the beam a distance L, we require

eE L < beam kinetic energy (K.E.)

[Y8]
i

63




or | - R x | ' ' (Jfr

EE ~ EE < Kig. Jp = plasma current density i}
N Ipte
° > ¥, (2.72)

‘/%_«.«
e

' The other more serious practical restriction for use of the model
is that the beam must be "cold" at injection; i.e., the trans-
verse energy must be small enough to be contained by the low net
magnetic fields in the plasma. We consider effects of beam

transverse temperature in Section 2.10.1. I

' ' 1

The EM calculations on current neutralization outlined : !
above may be "fixed up" to cover the case of neutral gas injec-

tion with gas breéeakdown. The way to do this is relatively ‘ -]

simple. Take 0 =0, t < tgr 0 0 t > tB' and use the

Bf
initial condition . (Ww”

‘ZIb(r;u(tB))
or

By [xr,ultp)l =

I
[
ko

The solution consists of the sum of two parts, one the decay

PR

of Ba (initial), which is a homogeneous solution of the vector
potential equation, and the other a solution of the vector
potential equation with the beam current after breakdown as a
source term. This latter term has a net current of the form

of Equation (2.68). |
2.7 SOME BEAM DYNAMICS : _ i
So far we have considered the EM fieldS'existing in a . o

beam-plasma system and charge production in neutral gases assuming

that the beam and gas parameters were specified. In reality, of




course, the beam motion is coupled to the fields. Our viewpoint
has tacitly emphaSLZed the longltudlnal electric fleld and we
have given expressions to evaluate its magnitude and dlrectlon
with or without finite chamber boundaries. We are thus in a
position to outline conditions for validity of the equations of
motion for the beam envelopes and steady-state self-consistent
beam equilibria discussed below. | |

2.7.1 The Rapchinskij-Vladimirskij (Ks&V) Equation. The
K&V equation (Reference 2.26) is a self-consistent equation for
the beam envelope including the radial electric space-charge and

self-magnetic fields, and finite emittance or transverse beam
“temperature}" The current density is taken uniform in radius,
(but varying in z), so the forces on the beam electrons are
linear in displacement from the beam axis and the flow is paraxial.
While these assumptions are restrictive and render the equation
irrelevant to many intense beam applications, the K&V equation

is analytically tractable.

The K&V equation for the beam envelope, modified to include
current neutralization, is

2 _
d a 2
e . 2 1-£ - 2 a-)] L+e (2.73)
az2 m a 3
BL Y e a,
where
a, = beam envelope electron radius
we = beam emittance or (r, dr/dz) phase space

area (cm~rad)

Our inclusion of fm is only wvalid if E, is uniform in radius

which, in turn, implies that the plasma skin depth is large




- compared to the beam radius and that £n R/a > 1. We rewrite

Equation (2.73) as

2 .
d™a 2
e A e
= — + - (2.74

d22 ae a '

e
: - 2v |, _ . 2 _

where A = 5 P. fe BL (1 %nq

A first integral of Equation (2.74) can be obtained by multi-
plying both sides by 2 dae/dz,-giving

o 2 ]
da a '
e _ e _ 2 1 1 2
az A"Cn(a_) S a3 A - (278
o] a a
e (o}
a, = beam envelope at plane z = 25

. (Ba )
v = |[|=
o 9z S
o

Figure 2.20 illustrates these terms. Envelope extrema are
obtained from Equation (2.75) by setting dae/dz = 0, and the
constant radius case is. daez/dz2 = . Garren (Reference 2.27)
has numerically calculated beam envelopes using a dimensionless

version of the K&V equation.

da
e
1.Z_I= g

Figure ‘2.20 ‘Beam envelope motion..
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Some of the gross features of beam behavior versus gas
pressure can now be gualitatively understood. Figure 2.21 shows
N some typical beam features (Ip ~ 2.5 x 10% A, 3 MeV) at represen-
jé ~ tative pressures. The beam propagation length in the photos is
- ~ 50 centimeters. We repeat here some of the arguments of Link
(Reference 2.28). Referring to Equation (2.74) we note that the

/T
b

transverse energy term is always > 0, so unless A < 0 the beam

blows up radially. Maximum pinching occurs when'fe ~ 1, fm ~ 0,

T
Lt

Using the charge production rules of Section 2.4, we obtain the

following ordering of f fm over a substantial portion of the

e’ .
beam pulse (pulse width ~ 50 nsec, t. = 15 nsec).

Sy

; . N 2
lj : P (torr} Ty (nsec) EE' ty (nsec) EE ABL Y/2v
T 1073 700 ~ 0 ~ o~ o0 vyt
[} - ' (space charge
blowup)
z) 107t 7 ~1 ~ g ~ 0 ~8,° (pinch)
AT o _
( _ -1 0.7 1 ~ 3 1 ~ 0 (drift)
- : - |
: | 5 . .
oy 760. ~0 1 : ~ ~ 0 —BL- {pinch)

s

1 The beam blowup in Figure 2,21 (d) after ~ 25 centimeters is
? probably due to an instability.

P
-

’i Let us now address the question of beam pinching and

| equilibrium radii in more detail. We consider two limits on
YE the beam radius or energy density; the steady-state, nonuniform
R beam envelope case and the steady—state uniform beam envelope

T@ ' case.




R8904

i BEAM DIRECTION

.002 Torr 4716 B

0.1 Torr 5595 B

| BEAM DIRECTION

I Torr 47308 7

Figure 2.21 Electron beam—gas'interaction
of pressure

60Torr 4734 B

as a function

[—

e,

RS

ER—

-




.n_ti‘
|

i S da
Case 1l: minimum possible beam radius, HEE = 0.
Setting dae/d2'= 0 in Equation (2.75}, for the envelope extrema,
and taking A < 0 for the pinching mode,
R a_ 2 52 a 2 N
Vp + IAI an (E-H-:) = (a"—) -1 | ‘ (2.76)

m

i

am is the envelope extremum value.

1, fm = 0 produces tight pinching, and

a 2
(JQ) > 1

a

m

for the pinched beam, we write (2.76) as

Recalling that fe
that

4 \2 YE-?B 2 a' 2 .
£n (59) o —ﬁL— (-59-) S (2.77)
m Zvao m

where we have assumed vo = 0,

Equation (2.77) is a transcendental equation for the
minimum beam radius, which gives the physically reasonable
(but not realizable) result that a high v/y beam with low
emittance should be focusable intc an extremely small spot.

In other words, a high current beam produces a strong magnetic
field to drive the pinch, and the pindh continues to a very

small radius if the transverse pressure is small.
One of the difficulties in achieving tightly pinched high-.

current beams arises from the fact that v/v and € are not

independently variable in real beams. Educted high v/y beams
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invariably have large emittances as a result of the interaction
between the electrons and the self-magnetic field of the beams
in the diode regioh. Additional problems arise in the beam
chamber. If the beam pinches very rapidly, an axial electric
field due to I dL/dt can be produced that is. large enough to
stop the primary beam in a distance on the order of the beam

radius. This effect is discussed in Section 4.
Case 2: constant radius

The beam envelope radius is determined in this case by
d.zae/dz2 = 0. From Equation (2.74), we obtain with A < 0,

(2.78)
‘/Al
where é is the beam emittance in cm-radians. Figure 2.22 shows
a graph of Equation (2.78) for a 4 MeV 6 x 104 ampere beam with
£ =1, I_ = 0. ' '
e m

Case 3: constant beam radius with finite ion emittance

In case 2 we tacitly assumed that the ions had no transverse
energy. This case can be easily generalized to obtain beam
equilibria when ions have finite emittance. We assume that the
average longitudinal velocity of the ions By s C < BLC. Then

using an equation for ion envelope, a s similar to Equation (2.73)

and setting a;, = a_ = a, gives
2 _ oy 1 2, 2 2 ., 2
2
'L

ey
[N




cm

------

m,

where

given by

T
(. _ £ 9 =
@

If g,
i

160.0 p

10.0 L

1.0 ¢+

0.1

1
— +
1L

1072 10

6 x 104

the
= the

the

[é The steady-state equilibrium

-1 l
£, ® cm-rad
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ion charge state
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. . . ©
electrical neutralization, fe

2

yin

BL- 0

10

e
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v/ ey Byt my/% Tt eg

~ 0, we obtain £.° =1

as in case 2.

B

L

2

Y,

Figure 2.22 Minimum constant radius versus ¢ for 4-MeV,
A electrons (beam in pinch mode).
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We can compare Equation (2.80) with the Lawson constant
radius, uniform beam model (Reference 2.29) where the beam I

electrons and ions have non-zero angular momenta. Then

2 '

o 1 1 ‘ <Bte > ym -
fe = 271 - 3 3 3 (2.81)

YL L) Bre 7 Y T By T my/Z ' R

. o ]

2 2 . .

<Bte > ¢ = average electron transverse velocity squared £

_ |

2 2 . | | | .

<Bti > c = average 1ion transverse velocity squared i)

We thus see a direct correspondence between the emittance and 2?

transverse energy in the uniform beam case.

2.7.2 Beam Envelope Egquation With Longitudinal Electric

Space Charge Field. The K&V equation has been generalized by

Walsh (Reference 2.30) to include E, space charge fields due to T
* ‘
faEr/az dar'. The modified envelope equation is (fm =~ 0)

a®a _ 2y (1 L. _ a2 1, e av da
d22 8 2 e L a 8 2 0 c2 dz dz "
LY L Yy (
2 2.
e a~v £

,...,..u..,_'

V is the ES potential on axis (r = O) and V has been taken as
v = V(z,0) + r°/2 (3%v/ar®)___ in deriving Equation (2.82).

¥ o
The author is indebted to J. D. Lawson for calling his attention i
to Walsh's work {(private communication, August 1971). : :




.

In uniform radius flow, Equation (2.82) gives an eqﬁation:for

a = a_: .

o
e a 2 2 32 :
2v 1 _ ' o av £
L B S L Mo o
If fe =0, e 20, vy =1 (non-relativistic), Equétion (2.83)
becomes
2 .
d 4T _
S5 = - 2 - . (2.84)
dz B.a ' :
L . .
Using SL =g = - 2eV/mOc2 from energy conservation, Equation

(2.84) gives the Langmuir-Childs space charge limited flow if
dv/dz = 0 at =z = 2. More general beam envelope profiles or
cases have not been calculated using Equation (2.82) to the

author's knowledge.

In summary, we have looked at beam ehvelopes and eguilibria

- for paraxial flow using the K&V equation that ignores Ez and one

special case of a'more general, albeit more complicated, equation
which includes beam space charge E_ fields. This latter equation

[Egquation (2.82)] would not be valid in regions near a chamber

endplate. Thus, in both cases, we have to be away from the end-
plate and interior to a drift chamber unless fe ~ 1, If fe ~ 0y
the potential well in the chamber must be "shallow" enough to
allow propagation., Finally, variation in beam current must be
slow enough to ignore the inductive fields over distances of
interest. |

2,.7.3 v/y And Beam Propagation-High v/y Beam Equilibria.

The envelope equations and beam equilibria above are all relevant

to "low v/y" beams; i.e., v/y < 1. The flow was assumed paraxial,




which implies that the beam radial velocity components were
small compared to longitudinal velocity components. In 1939
Alfven (Reference 2.31) calculated electron trajectories in
space-charge-neutralized current flow with uniform current
density in radius, and showed that the largest current that
could be enclosed giving electron drift in the direction of
electrons producing the magnetic field was I (amps) =~ 17,000 By
or v/y =~ 1. Lawson (Reference 2.29) generalized this result to
include space charge effects and obtained that uniform beam

propagation required

2
By Y

2 (fe - 1—) 201 | (2.85)
if fe ~ 1, vy s.l/z,'which is equivalent to the condition
that the Larmor radius of gyration at the beam edge in the
- self field is equal to a/2. These propagation limits are
independent of the beam radius.

If we are to propagate larger currents than'IA = 17,000 gy it
is clear that the current density cannot be uniform beyond a certain
radius. Alfven also considered currents due to VB drifts out-
side the uniform current beam and found that the total current
passable through a plane perpendicular to the z axis is

I(r) < I_ (r/a), r > a _ (2.86)

A

* Thus, the current density outside the direct beam must be
.". o l/ra

Several authors have locked at self-consistent, beam

orbit-EM theory to discover steady state configurations allbwing
I>1I,to flow within a fixed radius. Their approaches are
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essentially similar--an electron distribution function, fo’ is
assumed having a specified functional dependence upon the
constants of motion. All quantities vary only with radius

(parapotential flow).

Bennett Pinch (Reference 2.32). Bennett derived a self-

consistent distribution for an electron beam moving through a
counterstreaming ion distribution. He assumed charge neutrali—’
zation in the center of mass (&~ ion stream) system, and obtained
the relation '

[T (stat amps)]2 = 2 Nk (Te + Ti) c2 (2.87)

where Ty (Ti) are the transverse electron (ion) temperatures
(eV), N is the number of electrons/cm, and k is the Boltzmann
constant (ergs/eV). Although his model is collisionless, he
used the concept of transverse temperature. The particles drift

with constant z velocity and the density varies with radius as

n
n{r) = o (2.88)

' 2.2
(1 + n, br®)

A

density on axis

TTe2 BLZ

2k (Te + Ti)

o
i

It is interesting to note that Egquation (2.87) is a condition

for equilibrium of beam electrons moving through a neutralizing

-ion background having no z velocity in the Lawson uniform current

density model (Reference 2.29), As discussed previously,

Lawson's work is restricted to v/y € 1/2, or equivaleﬁtly,'
<3t 2>

B2

< 1




The equivalence requires the correspondence

Ym < 2 2

2 o Bte > kTe + kTi

2 1 2
> et +zm B>

One can also derive the Bennett distribution from MHD theory,
as is done in many plasma physics books. Then BLc is the
{constant) fluid drift velocity and <Bt2>/<BL2> > 1, or v/y > 1.

Hollow Beam Equlibria. Benford, Book, and Sudan (Refer-

ence 2.33) have expanded upcon Bennett's work, and obtained
other solutions using essentially the same distribution function

that Bennett used. They assume

fo « exp (— % H + a Pz)

H = ¢ (pz + mzcz)!E - e
= - £
P, = Py c By
p = total particle momentum
¢ = electrostatic potential
A, = 1z component of vector potential
a,o. = parameters (o < a)

Their form for n(r) is
R P L ] (2.89)
s @7

. n is an arbitrary positive number and L is a scale length.
Bennett's solution corresponds to n = 1. The particle and
current densities diverge at r > 0 when n < 1, and n >'1
corresponds to hollowed-out density distributions.  An inter-

esting feature of these equilibria is that the space charge




m—y i " ! ! i 7
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i

neutralized flow condition with n > 1 requires a line current
flowing on axis in the opposite direction to the beam current.
This backstreaming current is zero for the Bennett case (n = 1).
(cf., the bias current in the parapotential diode model of
Section 2.1.)

Another hollow beam equilibrium solution has been derived

by Hammer and Rostoker (Reference 2.34). They assume

-

fo « § (H - se) :S(PZ - YmOVz)

with
2 _
€ = 3V, - e [¢(r) - BZAZJ

Bc = VZ = an average longitudinal electron velocity, and

obtain a solution with most of the current flowing in a thin

~shell of thickness c/wp, the electrical skin depth. The beam

plasma frequency is Wy If v/y > 1, I = /37?; I,» Y, is a
relativistic factor at r = 0. In the Lawson model the propaga-
tion limit was v/y ~ 1/2, which meant physically that the Larmor
radius at the beam edge was egual to one-half the beam radius.
The HR model has currents confined mestly to a shell of thick-
ness c/wp < outer beam radius. One would the:efore expect that

a much higher magnetic field could exist before electrons were

turned around with radius c/2wp.

Yoshikawa Model. A beam model allowing arbitrarily high

current propagation for neutralized beams has recently been
proposed by Yoshikawa (Reference 2.35). The essential feature
of this model is that the beam has a macroscopic theta current

generating a self-~consistent z component of the magnetic field.

N
1
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An interesting feature of the equilibrium is that electrons move
almost parallel to the field lines, so their motion is nearly '
- force-free. The change density is taken uniform in radius for
moderately relativistic beam energies. It is not apparent to
this author how one would prepare Yoshikawa's equilibrium.
Spontaneous evolution of a high v/y beam to a state with macro-

scopic theta currents seems highly unlikely.

2.7.4 Steady State Flow with External B, Fields. Steady

state, parapotential flow in the presence of B, fields has been

extensively studied by high power electron gun designers. Their
analysis usually proceeds'from the assumptions of laminar flow,
radial force balance, energy conservation, and conservation of
canonical angular momentum in axisymmetric systems. (Also,
paraxial ray equation analysis has been used.) Many flow modes
have been investigated, falling mainly into two classes, iso-
rotational or rigid rotor beams, and isovelocity or uniform
longitudinal velocity in radius beams. Reference 2.1, e.g.,

contains a detailed discussion of these analyses.

We consider here only a few special cases of Bz flow.
Assuming laminar flow, uniform current and charge densities,
. and that Bt < BL’ the radial envelope equation of motion is

2

2 oy \ Vi
d”a _ _2v 1-f -8 2y 1 _ a L 1 - o (2.90)
472 2 e L J a By C : 2 '
Z YBy, L ma B,

where wy = Larmor frequency = 1/2 cyclotron frequency
eB
_ p
2ymoc
‘ 2 _
— 1 ! '= B -
2, 21rfBz {r', Zo)r dr B, (zo) TE flux

enclosed at "birthplace" of electron now at a,:z.
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In deriving Equation (2.90) we have used Busch's theorem
and assumed Bz uniform in radius, i.e., negligible beam dia-
magnetism. In an azimuthally symmetric system, the canonical

angular momentum is constant:

0]

Ymorzé - S I A constant,

Q

(2.91)

theta componeht of -
vector potential

If 6 = w = 0 where the electrons are born, and the electrons

rotate about the system axis,

w = —— [@-(r) - o(x )] | (2.92)
2ﬂymocr ©

Busch's theorem

If BZ is constant in radius, Equation (2.91) is

eBz r,
w(r) = '2%—(;8 1 —(E-—)

rO
T EA (E‘) - © (2.93)

The only case 6f Equation (2.90) we consider is that of solid

I

beam Brillouin flow, which'requires @0 = 0, or that the diode
is magnetically shielded. Setting dza/dz2 = 0 and fe = (0 gives

(2.94)

E
t
Il
-<ul M
QJKJO
(o] 3]

and from Equation (2.92), the flow is isorotational. Using
radial force balance, and energy conservation, one can easily

demonstrate that the flow is also exactly isovelocity. The
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practical importance of this flow stems from the above remarks,
from the uniform charge density and from the relatively modest
B, fields required. The perveance '

I (amperes)
A (volts)3/2

V = potential at the beam edge, is relatively low from the point
of view of intense beam physics, however. Non-relativistically,
the maximum current flow condition is

I (amps) = 25 x 10-'6 V3/2

(2.95
Relativistic Brillouin flow has a lower perveance. Neugebauer
(Reference 2.36) discusses relativistic Brillouin flow in detail
and his calculations show, e.g., that a 720 kA beam with 1 cm

radius would only reguire a B, field approximately 3 kilogauss

but: the potentialrdepression over the beam radius would be ~68 MeV! (ﬂww

If the cathode is immersed in the magnetic field, the flow
is no longer isorotational [see Eguation (2.93}] and we have the
case of hollow beam Brillouin flow; a lower perveance flow than

the solid beam case.

A finite beam emittance can be included in the envelope
equation following Garren's derivation of the K&V equation.
We treat the Vg
. force, thereby restricting ourselves to @O = 0:

Bz force term as a linear external focusing

2 ' w 2 o :
é__g. = 2_\’__2_, (1 - £ - BL2) i_ _ (B—I"é') a + 5_3- - (2.96)
dz BrY _ L a

AN,

i
! i

i

N [

.




2 ‘
If é—%-= 0, we obtain for non laminar, but paraxial flow,
dz .

2 2
2
2 _ B¢ 2y _ 2\ . ¢

Wr, % 2 7, 2 (1. £ BL_) + =7 (2.97)

o Y Py, : o

The flow is no longer exactly isovelocity.

The above equations all assumed electron rotation about the
system axis. If the electron motion is that of a guiding
center rotation about the axis, plus a fast cyclotron gyration
about the guiding center, it is most convenient to work in
rectangular coordinates, Andrews, et al., (Referénce 2.37) have
considered a non-diamagnetic or paramaghetic uniform beam case
with Bt'<< BL’ using the two-mass approximation (longitudinal

S, 3 r »
electron mass =y~ m transverse = Ymo). The eguations of motion

OI
are _ )
e - S_22 + w' .
x = - X c Y
. 2 . ‘ ' '
y = =7y - w, X (2.98)
‘ . da
zZ = £ Z ~ 0
Yy MpC¢ At
: 2
2 2v c 2
where 9] =5 (5) (BL + fe - l)
. L :
Bz
W = c¢yclotron frequency = e Yym_C

average longitudinal velocity

W™
Q
Il




The last equation in Equation (2.98) follows from the assumption
that Bt/BL <€ 1, A priori, one expects £ = 0 from the two.

mass approximation when v/YL <€ 1., They show, moreover, an a
posteriori justification even when v/y ® 1 with sufficiently - L:
high Bz fields. By defining £ = x + iy, Andrews, et al. combine

Equations (2.98) into !;

£r - i g + 02t =0 (2.99)

which has a solution of the form

£E = A+ exp (i‘u)+ t} + A_exp (i w_ t)
| (2.100) N
_ Y% 20)?|*
w, = z={l% |1+ (= ‘
- , c : ;?
Several flow properties follow from Equation (2.99).* If . L
2
28 7 .4 (‘x‘
)
c
[
the solutions are sinusoidal no matter what f£_ is. When [
c {w
W, = W,
: -
~ 2 L
w_ ~ -03-- (2 .10 l)_ (o
c

~ and the solution consists of a fast gyration of frequency W

" about the guiding center that precesses with frequency -nz/mc.
The sign of 2 affects the direction of precession. Thus, the
particles move.ét approximately constant radius, o varying

~only by the gyroradius r, (QAWB)Z. The flow is consistent with ;%

their approximations if

x . :

The solid Brillouin beam case [ £ = 0, BLZ <1 (or neglect of .
2 _ - : T

Be)} corresponds to @ /wc = - wc?4. {3
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“S”j 2B8 (a) 5
fi — 8,2 +f -1 |< 1 | ©(2.102)
] B B "L a
z L
Li - : |
J where B (a) is the beam self-field at the beam edge. Thus, if
-y Bz > Be.(a), the flow is predominantly streaming (Bt/BL < 1), no
L? matter what the values of fé and v/y are.* ' '

{g ~ Finally, we call attention to some recent work by Toeéfer

B (Reference 2.38) who uses the relativistic fluid equations for
(E electron beam motion. He considers examples of rigid rotor

- steady . state beam flow allowing diamagnetic effects and finite
[} _temperature, and gives several numerical plots of radial current
S profiles.

e 3 .
i _
tj 2.7.5 High v/y Propagation with Intense Pulsed Beams. All

S of the high v/y beam flow modes discussed above were steady state

EJ”). flow and did not consider E . Even if E, effects are negligible,
it is most certalnly llkely that the relevance to experlmental

{l : beam propagation would strongly depend on the preparation of the
beam, i.e., the flow generated in the diode. Also, of course,

("} one needs to consider the stability of the various models. '

o | In practical beam transport problems with pulsed beams one
., has to operate at neutral gas pressures giving good current
neutralization, or inject into a preformed plasma, in order to

minimize energy loss from beam-generated EM fields. Thus,

we are in a regime where the E, driving current neutralization
l{ is essential and, in principle, the steady state flow patterns
: would not be relevant until the plasma return currents have died
(3 away. These times are in the microsecond regime--much longer
Li than the beam pulse width. When substantial plasma return

(" ¥ We also note that the model solutions correspond to forcewfree
Lo electron motion (j xB=0).




currents do exist, the B, (r) distribution is that of a current

sheath around the edge og the beam, a distribution sbmewhat
similar, but not.identical, to the hollow beam modes. 8So, no
matter how we prepare the beam in the diode, we would further
have to consider evolution through a plasma return current stage
to determine and justify a relevant steady state flow pattern for

pulsed beams.

We might guess that a beam with plasma return currents will
have a By (r) field similar to the hollow beam equilibria with
fe ~ 1 as we have just mentioned. Then, one would not expect a
dynamical or orbit limitation on the net v/v; i.e., Pnét/Y can
exceed unity. However, as mentioned in Section 1, the EM limita-
tion dn propagation would still "hurt." When Vneé/Y > 1, the EM
field energy/particle exceeds the kinetic energy/particle, or
equivalently, beams can lose all their energy over distance of
the order of a few beam radii. A simple calculation illustrates

this point.

Let us consider a beam injected into a plasma tube with a
conductivity low enough that the inductive field of the beam
d:iVes a return current giving_vnet/y > 1, and take fe =1, 1In
order to propagate efficiently, the power input to the beam-
chamber system expended by the beam in setting up the magnetic
field associated with Vhet must be less than "inertial" pdwer
flow of the beam. The power input to the magnetic field is

2

~ ._g_- £n (R/a) B¢
C

and we must have




\'\-‘-_/ J

2
. I ‘
vy - 1) m002 NRc > 2 £n (R/a) Bc, a < R (2.103)
c
where N = number of beam particles/length = \)/rO
r, = classical electron radius
R = chamber radius

in order to avoid substantial beam distortion. Rewriting
Equation (2.103) we obtain ' '

-2

2
ot R £n (R/a)

(v -1 v>v
o'r
v 2 1
net Ry |
( Y ) < (Y + l) Ln (R/a) (2.104)

It Unet/Y > 1, v/y > 1, and with £n {(R/a) ~ 1, the EM criterion

is violated.

These considerations led the author to suggest that the

~relevant restriction for practical high v/y beam transport with

pulsed intense beams is vnet/Y < 1 (Reference 2.13). The low
pressure beam propagation experiments of Graybill and Nablo _
net’/ Y = V/v ~ 1/2.
Current neutralization was negligible in these experiments.

(Reference 2.39) have shown beam stopping when v

Yonas and Spence (Reference 2,23) have propagated beams with
vnet/Y <€ 1/2, but with v/y £ 4-5 over meter distances.




2.8 BSOME TOPICS IN BEAM STABILITY

Current interest in beam plasma stability (or instability)
focuses in two directions. Efficient beam transport clearly
requires a stable beam, whereas plasma heating is enhanced with
a weakly-turbulent beam plasma system. We discuss three types
of beam plasma instabilities: (1) longitudinal electrostatic,
(2) transverse (hose, kink), and (3)‘filamentation.or fluting
modes. The transverse hose instability seems to be the most
serious for high current beam neutral gas propagation, and the
fluting modes for transport with B fields. When considering
neutral gas stability we have to recognize that the nature or
the beam-generated plasma may change markedly during the pulse,

)

evolving from an unionized gas to an ion-electron plasma (t < ™N
to a highly ionized few electron volt temperature plasma after

breakdown.

2.8.1 Longitudinal Electrostatic (ES) Instabilities. oOur

discussion will consider the case of a pulsed beam plasma system
after gas breakdown, or injection into a preformed plasma. Only
linearized theory will be covered, implying that plasma in-
stability wave growth is sufficiently damped by collisions or
Landau damping to avoid non-linear regimes and strong particle-

wave trapping. :

A typical ordering of beam plasma component longitudinal

- velocity distributions (not to scale) is shown in Figure 2.23,
The system is a "hot beam, cold plasma" configufation with the
plasma return current flowing oppositely to the beam electrons.
The ion drift velocity and thermal speed are negligible compared
to the plasma electron quantities. ES instability theory con-

siders two types of instabilities, electron-ion (e=-i) relevant

P
I s




plasma electrons
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| } vy = drift velocity of plasma electrons
(j vy = drift velocity of plasma ions
5 i _
L Vv _ = average lontiduinal beam velocity
i ! vy = rms longitudinal velocity spread of beam electrons
Ve o= thermal velocity of plasma electrons
[ e L O
1'5 v = thermal velocity of plasma ions
: i
H Figure 2.23 A sketch of beam-plasma system longitudinal
L

velocity distributions
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to interactions between the plasma.return current electrons and
ionsg, and electron-electron (e-e) relevant to interactions be-
tween beam electrons and plasma electrons. Interactions between
beam electrons and plasma ions have a slower growth rate than

the e-e mode.

Electron~fon Mcdes. The two e-i modes are the ion acoustic

(Reference 2.40}) ahd the Buneman mode (Reference 2.41).

ti te
_—
Rew ~ 0,1 (512) W
i P
m, %
Imw ~ 0.1 (I'ﬁ-—) Lup ' _ (2.105)
P
k = 2n/» = 55
d
mp = electron plasma frequency = 4Trnpe2/mO
-np = plasma electron density
m, = ion mass
i
m, = electron rest mass
Rew = frequency of fastest growing mode
Imw = ewfolding growth rate of fastest growing mode
k = ~wave number of fastest growing mode = Zﬂ/l

,,,,,




Buneman. {v e ~ ¥

L t a

BE ' Rew ~ 0.1 (-——) W,

- : m, B

-~ Imw 0.1 (I-l-'l—) wp (2.106)
. 1 : -

i .

kK ~ £

l b

{- . IA waves are essentially due to induced Cerenkov emission from

i drifting electrons when vy exceeds the ion sound speed (® Vti)

(" and the Buneman instability is an electron-ion counter-streaming

- mode. The effect of collisions on these modes has recently been
[“”* © considered by Guillory and Benford (Reference 2.,42), assuming a
L ' Lorentzian electron distribution. Their conclusion is that
collisions are unimportant when'vte/vd 2 0.1.

Electron-Electron Modes. These modes were first studied by

- Bludman, Watson, and Rosenbluth (Reference 2.43), who considered
only the cold-beam case in the so-called weak-beam approximation
(nb/Ynp <1, n, is the beam particle density). Their theory
assumes a steady state uniform beam in mechanical equilibrium
with the plasma. E_ is zero in zero order so no plasma currents

z _
are assumed to be flowing. The plasma is further assumed to be

‘ infinite in extent (as it is in the electron-ion mode theory).
{E _ This approximation is usually not bad since the instability wave-
lengths are small. A nice discussion of the physics of these
fmg modes is given by Lewis (Reference 2.44), and the inflﬁenée of a

beam velocity spread (warm beam) on wave growth is considered in




detail by Bohmer, Chang, and Raether (Reference 2.45), using a

Lorentzian beam distribution function.

(i) Cold Beam. Quantitatively defining a cold beam requires

a statement about collisional effects. Ascoli (Referencde 2.46)

gives

\ fw
b B
7 <€ 0.76 u(v‘> o (2.107)
o _
n - _ .

where a = T < 1. The numerical calculations of Singhaus
(Reference 2,47} show that

v. \2

Vf' < (0.7 a mp/\));s ' (2.108)

We define the cold beam limit as the case when Equation (2.108)
is satisfied and additionally reguire that vb/V0 < al/3.

There are several sub cases within this limit that we now

consider.

High~Frequency, Collisionless. (k ~ wp/Vo, v € Imw)

Reww = w
P

Imw ™~ (oc/Z)l/3 wp ' | (2.109)

High-Frequency, Collisional. (k ~ wP/VO, v > Imw)

Reww ™ w
P

Im o~ (a/2v)? wp3/2 | | (2.110)

!/h I\\‘

.....




Low-Frequency, Collisionless, (kVO < wp' Imw 2 V)

L
3
H
B - ‘Ime = Ima(k) = ol/2 kV (2.111)
h Low-Frequency, Collisional. (kv < or V> Tmw)
3
LJ avkvo)

Imw = Imw(k) = wp ( 5

(2.112)

The high frequency modes have a reduced growth rate with large
collision frequency whereas the low frequency growth rate is

enhanced by collisions.

instability in the cold beam case but in the warm beam case they

may. The warm beam growth occurs within the Singhaus criterion,

. and with (v,/V_) > o'/>. The instability growth is now dependent
SN on beam momentum spread and is "kinetic," rather than "hydro-

J _
i dynamic" as in the cold beam case. The growth rate for fastest ,

growth (Vok ~'wp) is

2

V_y '
O

R

{' Imw

2

w

b d Rew
| an .

tw The modes are stable when the Singhaus criterion (Equation 2.108)

is violated:

Y v ' oW %
l% (_9) > [0,7 o UB] {stable modes) (2.114)




The Singhaus criterion has been experimentally checked by
Bohmer, Chang, and Raether (Reference 2.45) using low current
beams (~ 400 mA). They found instability quenching as predicted
by the Singhaus criterion. The criterion, if anything, is

conservative.

2.8.2 Beam Propagation and Longitudinal ES Instabilities.

The growth rates, oscillation frequencies, and wavelengths for
fastest growth of ES instabilities have been summarized for
various orderings of beam and plasma parameters; We now deter-
mine conditions for stable propagation of intense beams. To
attain stability of e-e modes, we desired to Satisfy Eguation
(2.114), the Singhaus criterion. Stability reduires

0.7 o w v 2

____P.<(_13)

vl VO

Using v = v_ . ~ 6 x 1072 n, [Te(eV)]_B/2 from Equation (2.61)
r
(z=1) , we can rewrite the above equations as
1y, Te —9 b '
(?H-) — < 10 (vﬂ) (e-e stability) (2.115)
P P o

with nb/ynp < 1 {weak beam regquirement).

If we take vb/V0 ~ 1 (hot beam), beam energy 1 MeV (y = 3)

12 electrons/cm3,

and current density ~ 104 A/cmz, ng ~ 2 x 10
- Equation (2.115) says that stability requires Te (volts)

N 10~14 n (cm—3). Efficient beam propagation oc¢curs in the
0.1 to 1 Eorr range, so i1f we take nP = 3.5 x 1015/0m3, Te.i 35

volts.




2

o o

Stability of e-i modes for the plasma return current is

~equivalent to requiring

-12 '
< = ————— e )
Vg < Vte'(E E, T Z np) {(2.116)

and, since V4 may exceed Vieir ion-acoustic modes must not
significantly affect the plasma conductivity. This requirement
translates into ve,i 2 Im(w) for ionwacoustic'modes, or frqm
Equation (2.105)

nP > 4 x 1010 Te3 (insignificant (2.117)

I-A effects)

1 3

for a hydrogen plasma. If T < 10 volts, nP > 4 x 10 3/cm , OFr
p 2 0.1 torr. Using these parameters in Equation (2.116),
the E, field driving plasma return currents should be less than

700 V/cnm.

2.8.3 Transverse Instabilitiesg--The Frozen Hose

*®
Instability.  Several authors have recognized that beam in-

stability against transverse bending (hose, kink) may be a
serious threat to overall beam stability (Reference 2.48); experi-
mental experience tends to confirm their predictions. Important
transverse forces giving rise to instability development are:

(a) the attractive electric polarization forces acting between
the ion and electron streams, (b) magnetic interstream forces,

(¢) image focusing forces from the presence of conducting pipes,
and (d) a velocity dependent drag force arising from the resist-

ance of the beam-generated plasma to motion of magnetic lines of

* .
Thig material contains the work reported in S. Putnam, Transverse

Ingtabilities of Intense, Relativistic Pinched Electron Beams,
PIIR-7-68, Physics International Company, San Leandro, Ca.,
March 1968.




force as the beam undergoes displacement When the angular
frequency of the perturbatlon is much less than the plasma
conductivity, o(sec ), or when the skin depth, s, of the mag-
netic field penetration of the plasma is of the order of a few
beam radii or less, we adopt the conventional terminology and
refer to the instability as resistive.  The increasing gas i
conductivity induced by the rising beam current suggests that
a non-resistive behavior may rapidly develop into a resistive
mode, particularly if the gas breaks down. Existing theory -
considers only steady state beams with constant plasma conduc~
tiVity and no net plasma return currents. More detailed inter-

pretations of the experiments thus require further theoretical

work.

Figure 2.24 shows a schematic diagram of the experimental

setup to investigate transverse beam instabilities in the low

pressure pinched beam mode P(~ 0,1 torr).** The drift chamber ("
was 50-cm long and 25 cm in radius. The electron stream was .
injected through a 1 mil-aluminum anode window into the electron
beam chamber, where the gas (air) pressure was held at 0.1 torr
for most runs. Aluminum screen tubes of various radii, R, were
also positioned within the large drift chamber in order to
observe the effects of conducting pipes on the pinched beam
oscillations. The electron beam was stopped in a graphite ﬁ?

calorimeter array placed at the end of the screen tube. The 5

calorimeter array consisted of 25 small blocks covering an area )
. one inch square. Two 90 degree stereo time-integrated photo- ;
' graphs were taken of the light emitted from the beam path by the

Alternatlvely, the low frequency hose 1nstab111ty limit is
defined as g(w) > beam radius. {j

The experimental measurements described here were performed by
G. L. Hatch, W. T. Link, J. Murray, and H. F. Rugge

*k
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line and recombination radiation of the beam-generated plasma.
In all cases, the photographs and-caloximeter data agreed
regarding beam position. The wavelength of the oscillation in
the pinched beam was measured from the stereo photographs and
the relativistic electron current in the pinch was determined

from the calorimetry data in the one inch graphite array.

A typical hose-like beam instability at 0.1 torr is shown
in Figure 2.25, A suggestive interpretation is that the in-
stability develops during the early portion of the risetime of
10 _ lOll/sec, s > b/2, and non-
resistive instability mechanisms predominate. When the con-

the beam current when o < 10

ductivity of the background gas rapidly increases at breakdown,
the plasma damps the motion or, in other words, lowers the

oscillation freguency and increases the growth time, so that

‘the hose appears "frozen" over the intense plasma radiation

times (~ a few beam pulse widths) .

O.1 Torr 4718 S

Figure 2.25 "Frozen hose" instability of a pinched beam.
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Rather idealized theoretical models (Reference 2.49), for

non-resistive growth predict the wavelength of the fastest

growing transverse oscillation modes; A, :
: inst
' -3

A o L(3) a, d <€D

inst ST A\Y :

(2.118)

L /E {vY? ~
—'—2-'-—(;Y—) D, d D

where d(D) is the beam (chamber) diameter. Figure 2.26 and 2.27
show experimentally measured wavelengths, showing reasonable
agreement with.Equation (2.118) . After gas breakdown, resistive
mode theory (Reference 2,50) suggests a growth rate = (td)—l
where ty is the magnetic diffusion time (Equation 2.65), For

o 2 1013/sec, tg4

non-resistive mode thus appears "frozen" over times of the order

2 100 nsec, and the beam path developed in the
of the beam pulse.

To summarize, a procedure is outlined to estimate instabil-
ity wavelengths for the low pressure case (tB < tp, the beam

pulse width) :

e From the charge production rules given in Section 2.42
the gas breakdown time at the pressure of interest
can be calculated, and the beam current at breakdown
time determined. .

e The instability wavelength may be estimated by using
the breakdown current value to determine v in Equation
(2.118).

e A gualitative estimate of the “amplitude" of the in-

-~ stability growth can be made from the time of breakdown.
Earlier breakdown and lower net currents mean smaller.
amplitudes. Figure 2.27 shows a pinched beam case where
t. > t_.

B r
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The values of v/y are approximate and are obtained from multiple
calorimetry. The beam kinetic energy is approximately 3 MeV,
the chamber pressure 100 y, and d = 2 cm.
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Figure 2.26a Instability wavelength as a function of (v/y) 3,
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v/vy 1is assumed to have the approx1mately constant value 0. 3
The kinetic energy is approximately 3 MeV, the chamber pressure
100 .

Figure 2.26b Instability wavelength in guide tube.
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_transverse instabilities,

Figure 2.27

Transverse instability of a highly pinched

beam where tg ~ t, » ty. Beam parameters: pressure
0.0l torr: beam current 25 kA; average kinetic
energy ~ 3 MeV; current risetime ~ 10 nsec.

This low pressure behavior is to be contrasted with the
transversely unstable, high-pressure (P > ~ 100 torr) propagation
where the beam is also pinched, but appears to rapidly blow up
into a smeared, filamentary structure (Figure 2.28). Although
current neutralization is small for both pinched modes, the
plasma conductivity is high at low pressures (¢ > 1013 to 1014/
sec) and very low at high pressures because of the high electron
plasma collision'frequency. The differences in the plasma con-
ductivity Suggest markedly different growth-time regimes for
Thus, as stated previously, before
gas breakdown in the low pressure mode,-the instability is nbn—
resistive, and, after breakdown, resistive. In the high pressure
case, a nonresistive mode would apply throughout the beam pulse.
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Figure 2.28
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Transverse instability of high
pressure pinched beam '
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2.8.4 Fluting and Filamentation Modes. Recent work with

beam propagation in BZ fields has demonstrated existence of
fluting and filamentation instabilities (Hammer, Reference 2.51)
and Stallings, Reference 2.52). A typical witness plate damage
pattern for such a mode is shown in Figure 2.29. Hammer has
considered a picture similar to the picture of the frozen-hose
mode. He suggests growth of a classical flute instability
(Longmire, Reference 2.53) due to inhomogeneities in the external

magnetic field until gas breakdown with a growth time, t:
T = L P
NP_I_

= beam-plasma mass density 7
= scale length of magnetic field inhomogeneities
~azimuthal mode number

= =z Moo
i

= perpendicular particle pressureée

 Until breakdown (p/PL) is dominated by beam parameters, and after

breakdown, the ion mass dominates p, giving a much slower growth
rate. The fluting modes have not been investigated sufficiently
atrthis time to confirm the model. Some theofetical beam-plasma
fluting and filamentation instébility studies have recently been
reported by Striffler and Rammash, {(Reference 2.54) and G. Ben-
ford, (Reference 2.55).
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Figure 2,29

Fluting instability of a hollcocw beamn.
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“ 2.9 PLASMA CHANNELING

i -

» Plasma channeling is the formation of a fairly well-defined
i X . A .

{j plasma region by beam electrons which has the ability to guide

subsequent beam electrons along its configuration. Any intense

beam will, of course, generate a plasma, but unless certain

h_A_
[

conditions are fulfilled, the plasma will not act as an effeétive

guide for upstream beam electrons. We discuss these conditions

)

in a simple-minded fashion drawing upon previous discussions of
beam—-induced plasma conductivity and transverse instabilities,

L and give some practical implications of plasma channeling.

{_ In_ordef for the plasma to be a plasma channel in our

context we require that:

1. The plasma region must have a frozen-in magnetic field
i"j - level at least high enough to guide beam electrons around
i the smallest radius of curvature of the channel configura-

I """ - tion.

2. The channel must be stable or, from the previous dis-

A{ cussion, on the frozen-hose instability, t

1 a > beam pulse

width. These two criteria are usually achieved when the

< . .
~ beam pulse risetime, tr'

{?_L gas breakdown time, =
y

f@ The experiments of Yonas, et al. (Reference 2.23) where

= beams were guided by copper pipes with a radius of the order of

1 ' the beam radius are an example of channeling. The image forces

i% - guided the early portion of the beam around the circles when the

| skin depth was larger than or equal to the pipe radius. Then,

%.2 | when the skin depth was smaller than or equal to the pipe radius
t after breakdown, the plasma frozen-in magnetic field "memory"

?i | guided subsequent beam particles,
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Yonas and Spence also attempted unsuccessfully to inject a

beam head into a plasma channel, as indicated in Figure 2.30.

Conducting

Figure 2.30 The experimental geometry for injection
' into a plasma channel.

An explanation of the failure is that the transit time of the
beam front around the ring was too long, i.e., the gas had

broken down, when the beam head reached the cross-hatched region
and the highly conducting plasma reflected the beam head to the
pipe wall, With the experimental parameters of v/y ~ 1, current
risetime ~ 20 nsec, pressure 0.5 to 0.75 torr, the breakdown

time was appréximately 5 nsec. With a longitudinal front wveloci-
| ty = 0.5 (250 keV electrons), the transit time of the front

around the ring would be 2 7 nsec.

These relatively crude physical arguments would suggest
that merging of the beams should be best achieved when transit

time of one beam to a merger point, t satisfies

trf
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. < < . .
Ty ttr tB {beam merger criterion)

where 2 and tB rafer to the electrical neutralization time and

breakdown time of the second beam at the merger point. Recall

from Section 2. 2 that only fe > 1 -8 is required for magnetic

L'
interstream forces (attractive for currents flowing in the same
direction) to exceed the radial electric space charge repulsion.
Our merger criterion is thus conservative. Pressure in the

10 torr range would satisfy.the criterion, since then 1. = 0,

N
and the gas is not highly conducting (td N tr)'

2.10 SUMMARY OF BEAM TRANSPORT PHENOMENQOLOGY

In this section, we shall try to "pull together” the

material of preceding sections and, in particular, loock at

- conditions for high beam transport efficiency in a gualitative,

but coupled fashion. Generally speaking, efficient beam trans-

port reguires:

L. The beam generated EM fieldg to be minimized (charge

and current neutralization),

2. The beam transverse momentum to be contained to prevent
particle loss to the walls (beam self magnetic fields or external
fields),

3. Stable modes (velocity spreads in beam and appropriate

plasma parameters.

The EM fields are minimized with neutral gas injection by break-
ing the gas down early in the beam pulse to obtain good current
neutralization. This process is lossy for v/y Z 1 beams because

a high degree of current neutralization implies a low net B, field,

0
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which is usually unable to efficiently contain the transverse.
mementum of the peak beam curreﬁt. Injection of a beam into a
preformed, highly conducting plasma-is the obviocus way to mini-
mize the EM fields, but requires an externally applied field to
contain the transverse momentum 'since the net current is now
even lowér. Benford, et al., (Reference.2.56)have demonstrated
that injection of a high v/y pinched beam into a pre-ionized
plasma results in very low transport efficiency. Most. of the
beam is lost to the walls near the anode window. A cold beam
<Bt2>/<BL2> < 1, should be able to propagate efficiently in a
pre—-ionized media, however. Thus, if we use a diode geometry to
keep the peak current below the critical current (recall Ic'é
8500 vy~ - 1 rc/d), propagation efficiency should be high in a
plasma or a neutral gas at rapid breakdown pressures. As dis-
cussed in Section 2.1, high v/yvy, cold beams have low current
dénsity (i few'kA/cmz), so if we want to attain current densities
of 104—105 A/cm2 at the downstream end of the transport system,
the beam must be compressed. Beam compression is currently an

active field of research.

~ The most straightforward way to transport high current
density, high v/y, (hot) beams, then, is to use external fields
in plasmas. Two such configurations have been extensively
studied over the past two years: Bgs oOr linear pinch, transport,
and Bz systems. We discuss neutral gas transport both with and

 without external fields in this section.

2,10.1 Neutral Gas Transport Without External Fields.
Transport modes in neutral gas-filled drift chambers can be

conveniently classified in terms of the gas pressure, as indi-
cated. in Table 2.4.
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TABLE 2.4

NEUTRAL GAS TRANSPORT MODES

Beam, Gas

Parameters Characteristics of Transport
Low pressure ' Ty 2t ion acceleration (large beam
P energy losses)
Intermediate Ty < tB-$ tr pinched (frozen hose) and
pressure _ drifting beams with high
I high current neutralization (maxi-
mum transport efficiency)
Unet/Y < 1 .
High pressure LI 0 unstable, pinched beam
propagation
t, > o
B
g low
N < electrical neutralization time
tB = breakdown time
tr = Dbeam current risetime
tp = pulse width
o = .conductivity at breakdown

o - > . :
Low Pressure Transport. When N~ tp' space charge fields

- dominate the beam behavior and finite geometry (endplates) effects

are important. Perhaps the most interesting aspect of this pres-
sure regime is collective ion acceleration, which is discussed in
detail in Section 4. We discuss some general features of low-
pressure transport at pressures outside of ion acceleration con-

ditions.
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The electrostatic potential well depth, ¢, is sketched in

Figure 2.31. We can estimate ¢ from Equation 2.20 as:

60

I
¢ (volts) ~ — B]iampS) (1/2 + £n R/a) (1 - e+ % 2c/R)
Zg L 2{(R/2.4) (2.119)
1 S.R-é 10 length units
z, = Ccrossover distance for EZ.(Equation 2.29)

"LE ¢ (zc) < beam kinetic energy, the beém propagation.will not

be limited by the longitudinal electrical field, although space
charge effects on radial motion must still be considered. If,

however, ¢ (zc} = beam kinetic energy, a length, EE, is defined
by ¢ (EE) = kinetic enerxrgy and if the exponential factor in

Equation (2.119) is approximated by a straight line,

z (cm) =
c (cm)

3.4 x 10% (f_:_c_) Vi+vP WP

¥ (amps) \tv (1 + 2v%)

(2.120)

1 — <
e R/2.4 (1/2 e R/a)) ’ zc ~ 2 (R/2.4)

where VP = peak electron kinetic energy in MeV, tr is the current
' P

risetime, tv is the electron kinetic energy risetime, and I is

the peak beam current. The voltage and current rise have been

taken as linear, and BL = R, If IP = 30 ka, tr/tv = 2,

VP A~ 1 MeV, R~ 6 cm, and a = 1, then Z =~ 1,2 cm, One can
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c position where E  reverses direction

(E . Propagation requires ¢ _. < beam kinetic energy

: -1
or v/y-1 << [(1 + 2 £n R/a) (1 - fe)]
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?E ' Figure 2.31 Electrostatic potential in drift
Do, ' chamber {t < TN).

| 4
[ . _ 2-109




S

- estimate a front velocity (ch)E by assuming that the front

travels a distance, E&, over a time scale of'TN:

E .
ES . “c -
Bf o E?E ’ zc < 51 (2.121)

This velocity is very slow even for low v/v beams and places a.
severe constraint on high v/y beam propagation efficiency at low
pressures. If EE from Equation (2.120) R (2R/2.4) propagation
would occur at a velocity determined by the "interior" beam
kinetic energy; i.e., the kinetic energy minus the potential
evaluated at z = 2R/2.4.

The discussion of the longitudinal ES field sﬁggests a
qualitative picture of the beam-front velocity behavior at low
pressures above the ion acceleration cutoff. According to
Equation (2.121) the beam front moves slowly until the charge
neutralization front has passed z ~ 2(R/2.4). Then the end
plate effect and the front velocity should increase. The front
velocity, however, will still be less than Rc and will now
depend on the “sharpnesS" of both the beam front and the space-
charge neutralization front. As the beam approaches the down- °
stream end plate, an increase in front velocity is again to be |

expected since the field will reverse direction as ES force lines

start to terminate on the surface charges of the end plate.

Intermediate Pressure Transport. As the pressure increases

and TN < tB < tr' beam transport efficiency goes up as currentL

neutralization occurs early in the pulse. We now estimate some
limits on transport efficiency in neutral gases. The two con-
ditions we need for efficient transport are

Ynet «
Y ~ 1 (EM regquirement)

(1)
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]
e - !Bget)z § - o |
g : (2} L < kT> + <n kKT> (transverse energy
3
.

8w P b containment)

Z& _ where <n kT> is the transverse energy/volume of the beam-

generated piasma, and <n kT>b is the average transverse energy/

L§ volume of the beam, here expressed in terms of an equivalent
¢ temperature., The above conditions can be rewritten as
¥ > . |
- I (tB) ~ 17,000 BLY’ | ' (2.122)
B 2 s -9 2 2 x 108 ;F

| | I (g) 2 1077 a® |<n kT> 4+ <xT> | (2.123)
i : B P 2 b .

: B . ma

where I (tB) is beam current (amperes) at gas breakdown, ¥ is
peak beam current (amperes), a is the beanm radius,<hkT>b is in

ev/cm3, and kT units are electron volts. The transverse energy

f H "

[ ——.

of the plasma cannot always be neglected. Egquations (2.122) and
I (2.123) can be combined, yielding

9 3.2.2

P < 4.4 x 10 BL y©8© - 1.6 x 10“8 a28L <hkT>b (2.124)

<kT>b I

where Ib(tB) = 17,000 BLyﬁ. The value of § has to be determined
from the length of the desired transport systém, subject to the

[—

restriction of a maximum value unity. <kT>b is the equivalent

peak average transverse beam temperature (eV) generated in the

i } i 1
[

diode and anode window.

M
H %
[

We can follow the arguments of Section 2.7.4 to determine §.

The magnetic field energy in the system should be less than the

PR
i H

L
b rmsanend

total beam kinetic energy:

Ib(tB)2 (amps) LF

100 (2.125}

r 2
¥ - >
IE (v 1) m_c N Lp Z
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N = number of beam particles/length
I, = beam pulse length defined such that the peak N
P times IL_ = total number of beam particles

L = length of transport system ‘

F = dimensionless form factor of order unity
Hl(az+b2_b2 _ b2, a. . R
= 7 [y 1~ !

4 a2 ~ b2 a2__b2 a2_b2 b b

for a uniform current distribution of outer radius a, inner
radius b, the chamber radius is R. Rewriting Equation (2.125)

we determine § for a 10 percent maximum energy loss:

' %
§ =~ 3.2 x 10 [ : R F I {2.126)
L .
and, substituting in Equation (2.124), we finally obtain
<KT> Ip-i 26 x 108 (PBY L (ro1) 1P - 1.5 x 1078 a2 g <akr>
b ' L /JF ’ L - P

(2.127)

If the plasma transverse energy can be neglected, Equation (2.124)
gives a criterion independent of ¥,
< 4 I (y-1)
<kT> Y 2.6 x 10 2=l
) L R
(2.128)
<kT>b_< total electron energy

In reality, <ZkT>b is coupled to ¥ by diocde dynamics. As an

example of Equation (2.128), we determine the maximum average

transverse beam temperature for efficient transport (i 90 percent)
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to a current density criterion.

over a 1 meter distance with a 1 MeV beam, 40 nsec peak current-
weighted pulse width, With F = 1,

<kT>, S 624 kev (2.129)
The diode configuration must be such that Equation (2.129) is
satisfied, and, since diocde "temperature" depends on current

density, efficient transport translates in the final analysis
* ,

When hot beams which violate criterion (2.128) are injected
into neutral gas chambers, one might expect that the higher
transverse momentum electrons would be lost near the anode, and
that the now effectively lower temperature beam would transport
efficiently thereafter. This is indeed the case, as demonstrated
by the experiments of Yonas, et al. (Reference 2.23). Table 2.5
shows their reported energy losses of a 250 keV mean energy
electron beam, propagating in a l-1/4-inch-diameter air-filled

pipe. Injected beam energy was ~ 300 calories.

TABLE 2.5

RELATION BETWEEN NET CURRENT AND BEAM ENERGY LOSS

Pressure Beam energy (cal) Net current Beam energy
{torr) 10 cm downstream (kA) at 10 cm (cal) at 100 cm
0.3 282 43 66
0.5 249 32 106
0.75 - 143 13 103
1.0 196 15 108

The results show that the highest net current (P = 0.3 torr)

mode is the most inefficient, indicating that EM energy loss

* The transverse energy containment criterion may be expressed

in terms of a dimensionless ratio: g =Z <n kT>b/(Bget)2/8n << 1.

n . . .
Inasmuch as Beet is not a beam parameter, it is perhaps more

convenient to use the beam current density for beam characterization.




probably dominates at this pressure (vnet/y > 1.8}). A note-
worthy characteristic of hot beam transport after initial energy
loss within a few centimeters of the anode is that transport
energy decays exponentially. The e-folding decay length varies
from 1 to 3 meters depending on the beam temperature and ratio
of pipe to beam radius. This phenomenon is not understood at
present, but probably represents particle loss--electric field

losses would most likely result in a linear decay.

At intermediate pressures, beam front velocity is dominated
by the inductive longitudinal field before breakdown, and We can
make an estimate of the front velocity in a fashion similar to
that used for B?S. We denote the front velocity in this case by

BfIc, and
8 I _ Xkinetic energy of beam electrons (2.130)
Uf (ec) Ez(inductive) tB :
or
B I ~ - 1 _i_:E
f 2\)P BL (1/2 + £n R/a)} tB

where vP is v for the peak current and a linear current rise is
assumed. We require that z. > R/2.4, 7 < tg < t, s in order to
use Equation (2.130). The beam front velocity is the lesser of
BfIc, Bch, where the transverse energy limitation on the stream-

ing velocity for a neutralized beam is Bch:

2 2

T ~ B
<(Bf ) > ~ WY—) (2.131)

The Lawson model has been used to obtain Equation (2.131). A

1 MeV, 50 kA peak current beam with tr = 2 t_ gives BfI = 2/3,

B
and since BfT ~ 0.67, the front velocity should not be limited

by inductive fields in the example.
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2,10.2 Beam Transport in External Field Plasmas.

Be—Linear Pinch Transport. The first experimental work

investigating beam transport in a preformed linear pinch plasma

was performed by Roberts and Bennett (Reference 2.57). They

transported relatively cold beams {(v/y £ 0.2) efficiently, and

even transported the beam around a curved (~ 90 degree total
bending) pinch sysﬁem.. Benford and Ecker (Reference 2.58) have
investigated linear pinch transport in more detail, cofrelating
transport properties with measurements of the pinch BB field as

a function of radius at time of beam injection. Most importantly,
they have demonstrated efficient transport (2 90 percent} of hot
beams (v/y = 7) over distances of two feet. This result is to

be compared with a maximum transport efficiency of 30 to 40 per-
cent over such distances with neutral gases and vw/y ~ 4 to 5.

Figure 2.32 is a schematic of their apparatus.

The previous discussion of neutral gas transport covers much
of the phenomenology of transport with a linear pinch system.
The importaﬁt distinction between neutral gas transport at rapid
breakdown pressures and linear pinch transport is that the radial
6 field that the beam "sees" in the linear pinch
system is independently variable and depends on the pinch con-
figuration at the time of beam injection. Recall that the time
scale of pinch dynamics is in the microsecond range; i.e., very
long compared to the beam pulse width.

Linear pinches break the gas down at the chamber walls,
forming a current sheath, which "snowplows" the plasma inward.

until the plasma has collapsed to the center, and the current is

‘"cored" with a radial profile similar to the Bennett distribution.

The pinch then bounces and may recollapse. [See, e.g., Glasstone
and Lovberg, (Reference 2.59}]. Some magnetic field profiles of a
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Figure 2.32 Experimental configuration of Z-pinch
apparatus and beam-generating diode. . o
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linear pinch. system used by Benford and Ecker are shown in

Figure 2.33. Thus, depending upon injection time, the beam
5 field or a pinched

- enters a "hollow," sheathed current, B
Lﬁ profile, In the figure, times in the pinch history up to

~ 3 usec are sheathed,

Beam-Pinch Interaction Phenomenology. A single particle

iz orbit theory of beam transport has been proposed by Benford and

} Ecker; the beam propagation is a superposition of single particle
- orbits of beam electrons in the (undistorted) magnetic field

I - configuration of the pinch at injection time, with initial con-

- ditions determined by diode flow.

|

We assert that three conditions must be satisfied to use

1 *x

%i single particle orbit theory in the above context:

. . 4ﬂcla2

i ) 1. td N > tp (beam current neutralization)
i c

I B82 n_m,v 2

: 2. +E2 XL > <pkr> + <nkT>, (transverse energy

8m 2 p b .
N containment)
i |
v, = radial collapse velocity of pinch current sheath

.. '

.

= np = pinch sheath plasma density

i
{j 3. Negligible longitudinal plasma penetration when single
. particle orbit theory predicts longitudinal reflection of
[é beam particles (see Figure 2.38).

L.{ The last two conditions have not been experimentally confirmed.
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Figure 2.33 Magnetic field profiles at times of beam injection.
R, is beam cathode radius, arrows indicate damage
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The last two featufes essentially mean that the Be field frozen
in the plasma has to be sufficiently strong so that the beam

. particle kinetic pressure, both transversely (2), and longi-
Lﬁ o tudinally when orbit theory predicts negative drift (3), is
negligible compared to the existing plasma kinetic pressure. 1In

jg other words, the beam cannot "pierce its way" through the plasma.
_

[; ~ The diffusion time, ty, in a linear pinch plasma would

- typically be approximately a microsecond, assuming a few volt,

; fully ionized plasma, so the first condition is usually fulfilled.
{j Figure 2.34 shows the beam return current, Ibr,‘at a radius r
- under this assumption of constant Be(r). The total-plasma current
Lé does not flow oppositely to the beam or "return" unless Ib(ro,t)
N exceeds Ip(ro,ti). We see.from the diagram that. the beam will
I; actually gain energy (albeit only a few keV) from the pinch until
- Ib(ro,t) exceeds Ip(ro,ti). The departure of E, from values at
{:;). injection and its radial variation are maintained, of course, by

‘ the very small changes in the net enclosed flux. The change in

{“; current flowing in the external pinch circuitry is also very small.
[ ,,,,,, ‘ Let us explore beam propagation for two representative cases.

1. Sheathed Pinch Current-Collapsing Phase

We assume that the conductivity interior to the pinch sheath
(f is high; there is always some current flowing in the interior of
the sheath, and the beam would rapidly break the gas down in this
o region, in any case. Tfansverse beam energy containment (condi-
}i tion 2) is attained in this phase because the pinch is in a state
of pressure unbalance and accelerating inward (snowplowing) and

‘% . also, when Rs > a,r (Figure 2.35) the beam effectively "cools."
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Figure 2.35 Sketch of beam propagation in
: collapsing pinch
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(The transverse energy/cm3 « aoz/a2 in the uniform current
density case, for example.) Beam cooling implies that pinch
currents much lower than the beam current can contain the beam
in the collapsing phase when Rs > ag. Benford and Ecker have
demonstrated contrel of beam current density by varying RS at ti‘

2. Partially Pinched Phase at Injection

In this phase the single particle model of Benford and
Ecker would predict positive z drift (propagation) or negative =z
drift (reflection) depending on the detailed shape of Be(r,ti).
Figure 2.36 shows these regions for a nearly pinched plasma. The
radius R, is the radius within which one would expect the core
0of the beam to propagate. If Be ~r, r 2 Rc (uniform current
density), we can determine Rc from the Alfven condition, Ip =
17,000'BLY.amperes, or 5 RcBec = IA’ Rc in centimeters, Bec in
gauss. I, refers to the pinch current and By to the beam
parameters.  If the Larmor radius of the beam electrons is less

than Rc' we can use VB drift formulas for r > Rc'

Conditions 2 and 3, which are really coupled, may not be
satisfied at pinched or near-pinched injection. If the pinch
were steady state, e.g., the pinch field pressure would exactly
balance the plasma transverse kinetic pressure, and the ad-
ditional beam transverse pressure would not be contained without
field distortion. We illustrate these remarks in more detail

through example.
Let us assume that a beam is injected into an approximately

uniform current density region of a nearly steady state pinch,
that the beam radius at injection is equal to the Alfven radius,
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RA' and the beam current egquals IA'? Moreovir, we take the beam YE
to be zero temperature (cold) at injection. The beam moving in _
the pinch field now becomes hot; i.e., <Bt2>/<BL2> ~ 1, The

beam average transverse energy/volume is <hka>b A nb'WT/2,

where WT is the total electron energy. If this transverse

kinetic beam "pressure" is negligible compared to the plasma pres-
sure at plasma pressure balance (steady state injection), or, is
small compared to the (magnetic-kinetic) pressure imbalance of a S
radially contracting plasma, we would expect single particle u
orbit theory in undistorted fields to apply. In the steady

state plasma case we require

W, 2 x 108 I, 2 x 108 (1,) Wy (steady -
b2 TR, B B.r (R,2) 2 i nch)
A PL L A prnc

or ’ W 3
2 5 11 _ 7 -
RA > 5.4 x 10 EEE¥5; (2.132) -
_ L

with WT’ <kT> in eV, n_ in cm 3, and RA in centimeters. If the

P . o
plasma density is 1016/0m3, <kT>b ~ 10 eV, WT = 1 MeV, Equa- 'ig

tion (2.132) gives RA > 2.3 cm.

Let us continue and suppose that condition (2.132) is ' L}
vicolated at injection. If RA ~ 1 cm, = pinch radius, e.g., |
eV/cm3, compared with the plasma energy density of {g
1007 ev/cm”. '
field will now be distorted, and that this distortion will

proceed by motion of the plasma particles with field lines "tied"

We expect, according to our model, that the pinch

to plasma motion, Recall that in MHD theory with space charge

neutralization

_— |
* » [} ‘ . . . . :
. These restrictions are for analytical convenience.
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-3 N : c2 2 _

o = .

= Vx (V x B) x Gz VB | (2.133)
‘ \ > e > :

where we have used the expression j_ = ofE + v x B/cl for the

plasma current density. The conductivity has been shown to be

high enough that the change in By due to the last term in

‘Equation (2.133) is negligible. - The time scale of the radially

outward plasma fluid motion will critically depend on how many

ions have to be "dragged along" with the plasma electrons; i.e.,

to what extent the fluid is an electron or an electron-ion £fluid.

Snowp low pindh collapse theory assumes that all ions are pulled
along (by an electrostatic charge separation field). The ion
pickup in our case will depend on the plasma density outside the

main discharge.

We develop a model for the expansion velocity assuming the
expansion proceeds in a way to maintain electrical neutrality
with uniform charge density in radius. Ions move to maintain
neutrality as the pinch discharge region is "pushed" outward by
the transverse kinetic pressure of the beam. Let dR/dt be the
velocity of the outer radius, R, of the pinch discharge (and
beam) . [ See Figure 2.37.] The velocity of the expansion is con-
trolied by ion motion. We estimate dR/dt in soft of a "reverse

snowplow" fashion:

o o, 2 2
Ym, Dy 20 2 [dR\? o (Bg™) R,
2R ) Oy | <p > ® - () [+ my kT - R
_ 2 R
~ 9 |un® EE dr' 2mr' v, (r', R) (2 l34f
dt |71 \R i ! )
O
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where BeO = magnetic field at injection (r = Ro)
nbo = initial beam number density
nio = initial plasma ion number density a
m; = ion mass - - -
npO = initial plasma number density . o |
Tp = plasma temperature - _ o ' i
22 - _ L
<Bt > = average transverse beam velocity squared _ : A
vi(r,R) = ion radial expansion velocity at radius r for
discharge radius R,
The electron plasma mass has been neglected on the RHS of i

Equation (2.134). With uniform density expansion,

._ r dR
ViR = g F

: pinch chamber iJ

. wall
1 tar/ae) l"i (Ry=dnsat l

AN hE

Representative . o
baan elactron trajectory . P
- Lt

RO-RA-pinch, beam radius at indjection time

vy {ri=ion radial velocity

Figure 2.37 The expanding pinch model., _ ' (“
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!-; .. ,and, if we neglect the last two terms on the LHS of Equation

LJ (2.134) [ they balance at injection in steady statel, we obtain
' ‘after integration

L o ;

S dR 2 ~ E.Y.mo Iy 2 2 R

L at 3 . - o B¢ Ln B

{ : 1n, - o)

{1 i ‘

U _ - (2.135)
o ym n° :

;L ~ 8,2 x 10 4 (-—B) (—98) B c2 £n (B.)

. : R

L. i ni o/

with mp'= proton mass; If we let R = RO + A, Equatidn (2.135) can
be integrated for -A/Ro < 1:

L — _ Ym n
e : A~ 3.3 x 102 g2c? t2 ‘EE —93

. h Loy
it . - ‘

(2.136)

7|

3

© 16/cm3, nbO ~ 3 x lOlz/cm .

2

: In our example,‘y = 3, n.
lg . R, =1cm, and with a beam pulse width of 80 nsec, Equation

- (2.136) gives A =~ 20 (m /m ) cm over the duration of the beam
) _ . pulse, corresponding to an average ve1001ty of ® 2.5 x 10 -1
Lj' - {m /m } cm/nsec. We emphasize that this wvelocity estimate is
| a 1ower limit because of our assumptlon that the ion velocity

tj:- controls the expan51on.

{%l The external circuitry of the pinch system will also affect

the beam penetration rate. Our model basically assumed that the
{7-  discharge chamber was connected to the external (lumped] induct-
ance and capacitance via a resistive impedance transmission line
rj with electrical length long compared to the field distortion time.
lj. The longitudinal electric field in the laboratory frame is
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B (V/em) ~ = (300) (g—fti/c) B, | (2.137)

maximally ~ 2 % 103 V/cm in the example. As is well known from
linear pinch theory, this field may produce a large voltage spike
across the pinch chamber if the external inductance is large
compared to the chamber inductance, L. On the other hand, if the
external inductance is small, the voltage across the pinch chamber
will essentially remain constant, and the total discharge current
will change so that L dI/dt ~ - IdL/dt.* Experimental verifica-
tion of the model must therefore be performed with'a carefully
defined system. Most importantly, the beam and pinch parameters
should be designed as in the model; motion of the plasma as a
whole is desirable, not merely an inner core where the effects of
its motion may be shielded from the outef pinch radius-chamber
electrode flux region.

The actual penetration process is undoubtediy much more com-

plicated than our simple model where plasma and beam currents
were assumed uhiform and coextensive, and the pinch expanded out-
ward while maintaining a uniform density.- More generally, one
might expect an (r,z) or two-dimensional, penetration process, and
certaihly not necessarily one that maintains a uniform current
density. Figure 2.38 illustrates the two dimensional penetration
where beam current is also initially injected'at radii outside
the critical radius. The longitudinal beam "pressure" is genera¥

" ted by reflection of beam electrons.

" e
We expect in this case that the pinch distortion time will be

somewhat increased if the signal double transit time in the
transmission line is short compared to the pinch expansion
time scale. :
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Longitudinal reflection

p/ / /4 region

R

\ ‘ z Beam electrons
Injection o

~ plane

R~ = radius of core propagation = RAO
in uniform current density case

R = = radius after plasma motion allowing
complete beam penetration

?igure:2.38: Two-dimensional panetratidn of
T pinch field by beam
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We now compare our remarks with the experimental results and
discussions of Benford and Ecker. They report target damage
radii and enclosed pinch currents at various injection times using
a 160 kA, 500 keV beam. The transport efficiency was reported
high (~100 percent), so we assume that all the beam propagated
within the.damage radii. Moreover, although the Be(r) variation
was not exactly linear within damage radii, we will assume it!

linear. The Alfven current for their parameters is 34 B, kA.
calc

- Table 2.6 summarizes the data. Ry is obtained'from an esti-

mate from experiment field profiles for the prédﬁct of the

radius and magnetic field to give Ipr and the beam transverse
pressure column corresponds to the maximum pressure (peak current)
within the calculated Alfven radius. The last column is an

estimate of the ion plasma inward-streaming energy density for an

‘argon plasma (nimivi2/2) with initial pressure of 300 ym. (All

their data referred to the collapsing phase.) This is a rather
crude estimate inasmuch as accurate plasma density and collapse
velocity parameters are not given, Our calculation assumed
collapse velocity of 1.5 cm/usec, and a discharge current radius
of 3 cm. These parameters are probably low for the 2.9 psec,
injection time; the velocity rises sharply as the radius contracts
in snowplow theory, and the effective radius of the discharge is

probably < 3 centimeters.
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TABLE 2.6

.BENFORD—ECKER DATA COMPARISON

exp ' calc : , S
' Ra Rg npCKTy, 2
(usec) (cm) (cm) (eV/cm?) (eV/cm?)
2.9 1.5 1.2 3 x 1088 > 10'8
2.4 2.0 1.8 1x10t® - ~ 10t®
1.7 2.8 2.8 5 x 1017 1018

The conclusions indicated by Table 2.6 are that single
particlé orbitltheory is a good approximation since the sheath
momentum can contain the beam and that the current should essen-
tially flow within their damage radii. The discrepancies betWeen
the calculated and experimental radii at later times'ére too
small to be significant in view of the inaccuracy in the damage
radii estimates, and also because of the calculational assumption
of a cold beam upon injection. An experimental test of the beam
penetiation model is therefore not included in the Benford-~Ecker
data.

‘As a final example of the model, we design a pinch injection
profile for transport of a 1 MeV, 2 MA beam at a current density
of.lO5
from the origin to about 3 kG at 2.52 cm. The maximum transverse

13 eV/cm3 which implies an

A/cmz. A magnetic field configuration should rise linearly

beam energy density is then ~ 2 x 10

argon plasma with nivr2 2 1030 eV/cm. A collapsé velocity of

_lO7 cm/sec and density greater than lOls/cm3 should be adequate

to contain the beam. If the plasma conductivity ~ 1014 sec‘l

* .
Recent data of beam compression in a tapered pinch suggests beam
penetration in violation of single particle orbit theory.
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(100 mhos/cm), the beam would lose about 100 keV energy/meter of
transport. Figure 2.39 shows a sketch of this field profile.
This example illustrates a basic feature of hot beam transport in
- linear pinches; namely the high transverse beam pressure can be
advantageously contained by the collapsing pinch at much lower
pinch currents than the beam current. 1In a sense, we are utiliz-
ing ‘the kinetic streaming energy of the ions, gained over a much
-longer time scale than the beam pulse width,'tq maintain a con- -

fining field configuration.

We conclude the linear pinch phenomenology by mentioning two
recent experiments to investigate other applications of linear
pinch transport (Reference 2.59). In one experiment, two beams
from magnetically isolated cathodes were injected into a pinch to
lock at beam mixing (Reference 2.59). As expected, when injec-
tion was interior to the pinch current sheath the beams did mix.
Beam compression has also been investigated in a tapered pinch
configuration and preliminary experiments have not indicated any
current density enhancement. Moreover, the beam appeared to
penetrate the more highly pinched downstream field region in

violation of single particle orbit theory (Reference 2.60).

Ve --‘.'I.D-‘I on/sec

By (r)
kgauss )
-lols/cm = ny

r {cm}
—

Figure 2.39 A magnetic field profile for _transport of a 1 MeV,
2 megampere beam at 10° A/cmz,
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2.10.3 Scolenoidal Field Transport. Beam transpoft in
solenoidal, or Bz, external fields has been experimentally
studied over the past two years. The first work was performed
at Cornell University using v/y ~ 2 to 3 beams at current densities
of a few kA/cm2 (Reference 2.37). A beam transport efficiency of
24 percent at 15 um pressure was reported using a 10 kG field,
compared to a 6 percent efficiency without the field. At 435 m
pressure the 10 kG field gave the same transport efficiency as no

field; the field apparently prevented space charge beam blowup at

the low pressure. This early work has been extended at Cornell

and NRL and efficiencies of 85 percent have been attained over 2
meters using similar beams (Reference 2.61). Hammer and Levine

have feported high transport efficiency with higher v/y beams

{(~ 10) (Reference 2.62). More recently, Stallings at PI (Refer-
ence 2.52) has looked at Bz transport efficiencies with a v/¥

> 10 beam over a wide range of magnetic field values (up to

~ 30 kG) and has discovered a substantial dropoff in transport

efficiency above about 9 kG.

The requirements for efficient transport in BZ systems are,
as might be expected from our previous discussions, that the EM
fields of the beam be rapidly shorted out by charge and current
neutralization (preionization or rapid gas breakdbwn), and that
transverse beam momentum be,contained by the field. We have

already discussed charge neutralization and the role of current
' net
6

without Bz fields, we want vnet/Y < 1 strictly from EM limita- -

neutralization in the z direction to keep B low. So, as

tions. The Bz systems have another dimension to consider, how-

~ever. Effects of theta currents and diamagnetism or paramagnetism

have to be evaluated. The remainder of this section is largely

devoted to an exploration of theta currents.
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Diode Flow. As already mentioned (Section 2.1), no self-

‘consistent theory for diode flow with longitudinal electric fields
. exists, so we are uncertain about the theta motion in the diode,
and consequently alsb about the beam injection conditions into the
transport system, We first briefly discuss electron motion in

the diode gualitatively. When electrons are emitted from the
cathode in the presence of the field {(which must fringe into the
diode to avoid mirroring of high transverse momentum electrons),
the guiding center of the electron orbit is accelerated azimuthal-
ly about the sYstem axis by forces due to the presence of a

radial electric field and the Be self field. This guiding center
motion gives rise to a macroscopic volume theta current that
appears as a rotation of the cathode emission pattern at the

anode window. The radial electric field contribution is dia-
magnetic, whereas the rotation due to the self field giving rise
to twisted magnetic field lines is paramagnetic. Experimental
evidence shows that the paramagnetic volume theta current domi-
nates with present high-current diode configurations.*_ If one
believes that the guiding center motion in the diode approximately
follows field lines and, recalling that the pitch angle will in-
crease with radius and with current density due to the self field
(Be), we expect rotation to increase with radius and current
density. Hammer has measured the twist of a strip cathode

pattern and found an approximately linear dependence of the angle
(ﬁp to ~ 50 degrees) upon I/y B_. At a few hundred kiloampere
beam currents, current densities ~ 10 to 30 kA/cmz, and Bz in the

few kilogauss range, v, and v, of beam electrons appear to be

&
comparable.

x .
The radial electric field is shorted out by the electrodes in
high current, larger aspect ratio (rc/d) diodes.
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The genefal trajectory of an electron in the diode is a
superposition of motion of a guiding center rotation about . the
""" system axis and a gyrofrequency rotation about the guiding
- | ‘center. The gyro-rotation gives rise to a magnetization or
surface current,'type of diamagnetic theta cﬁrrent, and is ex-
perimentally manifested by a "smearing” of the projected cathode
emission surfaces over cyclotron radii, Stallings has shown that

the cyclotron radii may be of the order of those expected

. . : *
for electrons with nearly total-energy transverse to Bz'

We can quantitatively estimate the relative importance of

the theta current contributions of rotation abdut the axis and

N . gyro-rotation with a simple model. The model is given to allow
a practical working description of diode flow and transport :

j : phenomenology; and we proceed recognizing the perils of crude

o | estimates. Let us assume that the radial electric field con-

O tribution to rotation about the axis is negligible compared to

! : Be self-field effect (large aspect ratio diodes), that the

- current density is uniform in radius, and that the guiding
centers approximately follow field lines. This latter assumption

T is equivalent to restricting the model to cases where the curva-

‘J ture drift velocity is small compared to'rotaﬁional velocity

o about the axis. Referring to Figure 2.40, we obtain

' ' = V_-sin
Tﬁ | - Vie T Vpsina (r)

Vieg = VY, tan o (r)

| B, (r)
P tan g {r) = B ' (2.138)

""" LI with

H

Vo perpendiculaf cyclotron or gyro velocity

V), perpendicular rotational velocity about system axis

]

AN These measurements were made a few centimeters beyond the anode
| window., :
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Figure 2.40 Perpendicular velocity éomponents
in combined By and B, magnetic fields.

The longitudinal electron velocity as a function of radius, BLQ,

is given by

(r) ~ g (2.139)

b/l + sin?2g + tan?a

where B refers to the total electron velocity. The average
longitudinal B, <BL>, for uniform charge density is then

By,

1l + sin® {(r') + tan

- _2 r dr' '
<BL> = ?— B f ( 3 3 173 (2,140)
. : O .

(x")

We can define a condition for validity of the assumption of

uniform current density from Equatibn (2.139). Let us require

that - : |
- B - B (a)

5 < 1/2

i.e., current density uniform within 50 percent. This condition

translates from Equatibn (2.139) into requiring a{a) < 1.
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- | Equation (2.140) becomes e

o 4 g /2

a.Cl N . i
Cl d‘< 1

- where

cl = I(aggs)
' 5a Bz

(2.141)

a in centimeters,_Bz'in gauss. When_Cla ~ 1, Equation (2.141)

says that <BL> f.0.78, and if Cla > 1, a condition Cl T i1

defines an approximately uniform density core of radius a.

[ Recall the data of Stallings (Section 2.1.3) regarding experi-

mental observations of a peaked current density along the axis.]

Assuming that Cia-i 1, we proceed with the uniform beam

model. The rotational angular velocity about the axis, w, is

from Reference 2.37, €T,

'<8L> ¢B -cEr

W = 8...
rBz rBz
[T (amps)} c £ 1
- 2 e 2
Sa Bz <§L> , Yy,

~and with fe A l; Cla < 1, w is approximately constant

o ~ oI (gmgs__)l <> c

5a” B
Z
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The paramagnetlc change of B along the axis, AB p' due to

rotation about the system ax1s, can now be estlmated with a

rigid rotor model, assuming BBr/Bz negligible compared to

e‘4ﬁ/c jbe'

P o 41 2
_ABZ o Dpewa /2 |
. 2 : ' (2.144)
~ W2a2 Ip '
25 B,

with jb the beam z-current in A/cmz. :Similarly; we estimate the

diamagnetic gyrorotation contribution to BZ at r = a,_ABZd:

AB d (%B 1 . AB d) ~ 8Wn W (a) (2,145)
z p P _ :

where BZi is the applied field, ng is the beam particle density,
and W, is the perpendicular gyrorotational energy at the beam
edge., Combining Equations (2.138)}, (2.144), and (2.145), we
obtain an equation of compafison, evaluating ABzd at r = a and

' ABZP at r = 0:

a i a
88,° (2Bz - 1B, )
(AB P)2
Z

T . _ d
and since the maximum, ABZ occurs when BZ ~ ABZ ’

AB,, | -

. !/Cg* cosa (a) O (2.147)
AB :

Zz

~ X cos2a (a) (2.146)

A
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{E' i - Thus, if v/y > 1, and rota;idnal effects due to the radial

/ electric field are negligible, the model predicts a net para-—
magnetic beam. Although-wé have restricted the model to

v - S L B
i o C;a ¥ -3
. _ : 2
| 5

L the geometry of Figure 2.40 suggests that the conclusion of
{7 Equation (2.147) is probably valid for C.a 2 1.

< 1

1

}7_ Transport System Phenomenoclogy. The first gquestion which
'~ arises in discussing transport phenomenology is the influence
of the anode foil upon injected beam orbits. If the foil

. essentially remains intact at solid densities during the beam

- ~ pulse and (wc/v)-< 1, the beam electrons enter the transport

lj : - region with a multiple scattering vglocity distribution about
their incident velocity vector at the anode. If § is the angle

{MM} the velocity vector makes with the B vector after scattering,

. similar considerations as in Figure 2.40 give

SR | v, ~ v sin 6

2

L} | N - v, ~ vcos § sina - (2.148)
T3 _ V. = Vv cos § Ccos q

|9 2

fﬁ and tan o = IBget{/Bz to allow for current neutralization.

Another important guestion regarding the transition region

f§' from the diode to the transport system is whether the particlé
1 motion is adiabatic as Be is reduced by.current neutralization.
A non-adiabatic transition will partially convert diode ,
i , rotational transverse energy to transport system gyrorotation,

. as can be seen from Equations (2.148), e.g., with § replaced by
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the diode o value. If the transition is adiabatic, Equation

(2.138) indicates that the transverse energy in the transport
system will decreéase, since o is diminished from the diode
value. Fihally, it is necessary to determine whether BZ field
lines are "tied" at the anode window, or, in other words,
whether the field diffusion time in the anode over distances
of the order of the beam radius is large compared to the beam

pulse width.

A sketch of a beam penetrating a neutral gas is shown in
Figure 2,41 for the case of a net diamagnetic beam channel, and
with field lines assumed tied at the ancode window. The field

line intersecting the outer cathode emitter is indicated. The

-configuration is an asymmetric double mirror geometry with the

- downstream end_moving at velocity Bpfc, which we anticipate to

generally be <€ Bc of beam electrons. Aside from the theta
electric field, the electric fields in the penetration front
region are as previously discussed without an external B, field.

In the region z, 2z S z, the electrostatic field is primarily

radial, from z 2z 2 2o EZl « L dI/dt, and for z < Zq

1
EZ2 = [T({(t) - I(tB)]/ﬂcBaz, where I(tB) is the z-directed
current at the breakdown time tB’ and op is the conductivity
at breakdown along field lines. The Ee field is, of course,

in a direction to drive plasma currents to counteract beam

theta currents.

In neutral gas propagation without B, fields the beam
electrons in the penetration front are lost radially to the
chamber walls When £, < l/yz. If le igs sufficiently large,
however, the longitudinal space charge field can prevent beam

electron escape to the wall., In other words, beam electron mo-

tion is primarily azimuthal and longitudinal for large enough B, .
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%{1 zl'= distance where gas breakdqwn occurs

z, = distance at which electrical neutralization is
- achieved

}ﬁ. ' zy = furthest penetration length of beam into neutral
{{' o gas :

Figure 2.41 Beam penetrating a neuwtral gas with Bz.
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The space charge limitation on propagation in the z direction

is, from Section 2,.10,1,

| 1 1
v/ (y - 1) < v 3Tn ®/a) (I-)

(2.149)

On the other hand, sinusoidal or_rédially contained beam
particle motion in the uniform beam approximation requires
for fe E_O |

vy £ ax1088 % (2.150)
with B, in gauss and a in centimeters. With no space charge
neutralization, a 10 kilogauss field, e.g., could contain a
500 keV beam of radius 2.5 cﬁ with currents up to about 300 kilo-
-~ amperes (v/y ~ 10}. The electrostatic field at the penetration
front can therefore cause substantial reflection of beam

electrons back to the diode.

We can expréss the criterion for particle reflection
generally using Hamiltonian formalism and conservation of, _
canonical angular momentum for axially symmetric systems. Non-
relativistically, reflection will at least occur for all

particles satisfying

(o]
PG e 2
- 4 > Ae) > 2m0 (EO - AE - e IV(I"Z) I) > OII

r
(2.151)
z >z,
with PeO = mTr 2 éo - (e/c)rOAe = electron canonical angular -
0 ° S ' momentum at z = 0
r, = radius of electron at z = Z
A = theta component of vector potential
E, = electron kinetic energy at z = 2z
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AE is the energy loss in transport up to z = Zq and_v(r,z) is
the electrostatic potential'for z > z,. Let us rewrite

Equation (2.151) for a simple case where szr,z) = le(f)f(z).
Moreover, if we assume no collisions in the anode window, Pe0

can be related back to emission at the cathode. We obtain

_ e. 2 i E
PB = 7e Lo _Bz {< 0)

where r, = emission radius at cathode, and 6 is taken zero at
the cathode, Such a P.° corresponds to electrons which do not

&
encircle the system axis (Reference 2.63), Egquation (2.151)

becomes _
réz 2 2c 2 -
f(z)r - — > ( 1) 2mO(Eo - AR - aV) .
. eB
_ z
[(E0 ~ AE ~ eV} {eV)]
> 0.47 (2.152)

[Bzi (gauss)]2

This equation is, of course, valid both for adiabatic and non-

adiabatic motion.

If electrons enter the penetration front into the region
where fe < l/YLzlthe rotational leume beam theta currents shift
from paramagnetic to diamagnetic rotation [ see Equation (2.142)]
and electrons are displaced radially outward as they reflect.
Upon returning to the diode, the rotation due to Be(z < 22) is

now diamagnetic. If electrons. are also electrostatically

plugged at the diode, particle loss occurs when diode voltage
begins to drop. Even if the beam front has reached the end of
the transport system and V # 0 throughout the channel, the
mirror geometry fesulting from tied field lines at the end of
the transport system with a net diamagnetic channel will reflect
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electrons because of energy loss.AE. '(An energy loss of

~ 100 keV/m would occur with a-lO5 A/cm2 beam with o = 100 mhos/
cm, corresponding to a fully ionized plasma of a few volts
temperaturé.) When a substantial fraction of beam electrons are
reflected near the penetration front, the front velocity Bgc, is
more appropriately calculated by a pressure balance argument

similar to the linear pinch penetration process:

, | |
(AB_) n 2 '
—E . & [<BLC - (sic)>] - (2.153)

where ne is the average reflected electron density and BLc is

the average incident electron velocity.

Plasma Theta Currents. Beam-induced plasma theta currents
will be diamagnetic with the exceptions of (1) those induced by
Ee when the beam is diamagnetic andm(Z){”under appropriate
conditions, those due to axial rotation of electrons reflected
frdm the diode by electrostatic plugging. We neglect'the latter

plasma theta currents in our discussion; they would only be

important in low density plasmas or with very high B, fields.
The characterization of the volume plasma theta current before
electrical neutralization for neutral gas injection may be

quite different than without B, fields. Our preVious assumption
(Section 2.4} that secondary electrons escape "instantaneously"
from the beam channel to the chamber wall until fe = 1 is not a
good approximation with high BZ fields. We use a simple model

to determine limits on BZ for escape of secondaries to the
chamber wall at radius R. The turning radius, Ty must be

larger than. the chamber radius, R. Referring to Figure 2.42,

and assuming negligible diamagnetism, Busch's theorem (Equa-

tion 2.92) states
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electron orbit 2

H
it

1 radius at which secondary is created by
collisional ionization

o]
H

beam radius

Figure 2.42 Cross section of beam chamber showing
secondary electron orbits when r_ > R
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2
w r. ‘
b = w(p) = ir--(-%)-_[l - (Eé) ] (2.154)
eBZ'
U, = 32 m_c

when 0 = v, =V, 0 at r =r, (electron birth). If we further

assume that the space charge field is primarily radial and due

to a beam of uniform charge density,

: a“-r
_ _E Y 1 r
y(x) = ; + 2vy (1-£)) [—;ggﬂ— + Ln E]' r>a (2.155)
v = primary beam v

b

Combining Equations (2.154) and (2.155), and taking B = Be at

2 2
o T [Y(rl’rt)] -1 (2.156)
G(rl,rt) :

212

r
rtz 1 - (r-—];)
£

We use ry ~ O-in‘Equation (2.156) for a representative secondary

electron orbit; we could insure that all secondary electrons

(7]
1t1

escape, €.9., by evaluating G at ry = 0 and vy at r, = a. Equa-

tion (2.156) giVes

szRz < |1+ 2. (1-f ML + £n rra}[? -1 2.157
——;7— - “Vb e’'\2 noR/a ' : (2. )
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or
B, (gauss) < 17,0g§ (amps) {[i + zub(l—fe)(% + LIn R/a)]Z _ l}%

r. 2 R

This equation can be expressed in a form more appropriate for

neutral gas penetration, where fe is increasing behind the front,
Electrical neutralization will occur via secondary electron

escape to the wall until

- w. R
(1-f ) = = L
e (1 + 2 £n R/a) 2

Vb

r > R (2.158)

If the beam current in the penetration front is space charge
limited (Equation 2.149),

< 2 R b

c
or | (2.159)

< 17,000 {(amps) 2
BZ (gauss) TR Y

" When BZ exceeds the limit of Equations (2.157) or (2.159), or

if vy (1-f_) satisfies (2.158), secondary electrons will no
longer escape to the wall. In a similar fashion we can then
b (l-fe) Iimits such that

a = r. < R, as depicted in Figure 2.43:

determine upper B, or lower v

| < 17,000 (amps) _ 2 (%
B, (gauss) T3 [1 + vy (1 fe)] 1

a < r, <R (2.160)
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Figure 2.43 Cross section of beam chamber showing secondary
electron orbits when a < r, <R.
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or in other words, an annular secondary electron "beam" with

inner radius > a is formed until

: 2.2
< Wy “a 3
vy, (l—fe) 5 + 1

I
[

C

SaBz 2 % o
W + 1 -1 | | (2.161)

As an example of the above equations, let us take B, = 3 kG,
a=2,5cm, and R = 10 cm. Equations (2.158) and (2.161)
give '

2

r, = R, vb'(l—fe) 2.6

a € r < R, 2.4 < v <

b (l—fe) 2.6

When an annular return current "beam" is formed, the
secondaries in turn ionize the background gas, creating addi-
tional secondaries which are then expelled outward to the wall
unless BZ exceeds a value of the order 17,000/5 (R-az), where
a, is the outer radius of the annular return current beam. The

neutralization process for this range of v (l—fe) and lower

values is thus of a cascade type. At stil? higher Bz levels,

or as fe qontinues to increase, not all secondaries will leave
the beam channel, and we expect the radial electric field to
increase again if the beam current is still increasing,* There-
fore, at lower gas pressures where breakdown does not occur early
in the pulse, or, if the perpendicular conductivity after break-

down is low and the beam current continues to rise substantially

Even if £, ®# 1, at some point during the beam current rise, a

space charge field may still be generated until the current
reaches its peak value,
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after breakdown, the net z current may exhibit oscillatipn due

to the re-establishment and neutralization of space charge fields.
(Recall that the E_ space charge field opposes the inductive
field during the beam current rise.,) A summary sketch of the
radial motion of secondary electron currents generated by space

charge fields is shown in Figure 2.44,

Finally, we come to the case when B, is sufficiently large

‘that r, < skin depth =~ c/w_, w ghe plasma frequency. We see
from Equation 2.156 that (wL/wp) > terms of order unity to
entirely prevent space charge neutralization. Lee and Sudan
(Reference 2.64) have considered the current neutralization
problem for an undistorted, non-rotating beam penetrating an
infinite plasma with a frozen-in B, field. Their criterion for
destruction of current neutralization is sz/mpz > 1; the
physical basis of this criterion is apparent from our model.
Whether in fact current neutralization may be completely
eliminated in a finite system is not clear. The EM cavity model
(Section 2.2) showed that in a long tube away from the endplate,
Ezris indeed in a direction to accelerate beam electrons when |
fe S 1/2 Y2. In a finite system, however, the chamber endplate
would cause generation of a large EZ field to drive a return
current even when fe ~ (§, So it appears that substantial

current neutralization might occur in:.a finite system without

. charge neutralization if B, is large enough. In fact, one ex-
pects that the space charge limit of Eq. (2.149), with v replaced

. DY Voagr would given an upper_bbund on the net current.

We cap now estimate the plasma volume theta currents, jP@’
induced by space charge fields. To do this we need the secondary
electron charge density, pp, as a function of radius and w{r}:
jp' = pp(r) rw(r). The charge density can be evaluated explicit-
ly from radial force balance and Poisson's equation. The first

casé we consider is a < r, <R for all secondary electrons.
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4
2m r
~ o 2 -l
pp(r,rl) 5/€ﬂ - W, 1+ (r )
§ =  normalization factor
The determination of § can be obtained from
a, .a _
) ] — =
f dr f pp (r ,;:l)drl 21Trl} = fe}\b'
a; o -
W
rl
pp( )
A = beam charge/length.’

b

Equation (2.154) determines w{r). Rather than proceeding with
this straightforward, but tedious, evaluation, we shall estimate

jpe assuming negligible radial variation in pp(r):

an approximate expression for w(r) can be obtained from
Equation (2.154) by averaging r, over the beam radius. The

field exclusion interior to the plasma return current, ABZ,

is then
a
2 £f A 2 '
~ 47T e 'b _a
ABZ S Y_/. a2-a2 mL (l ——_—3 2)-J:chc
al L ) 1 r
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Rewriting the above equation, we obtain

AB (v}
.........‘E.w2f b

. a '
B, e Y | 1T('5122_ a12)

< R ({2.162)

The upper limit on fe in Equation (2.162) is given by Equation

(2.161), and a, is determined by (2.156). The equation is

strictly valid only if ABZ/BZ S 0.1, since we have assumed a

constant B, field in its derivation. The space charge limit on

vy, in Equation (2.162) is
\)b . __l B
m < [F (fe‘,fer' a,az, R)] _ (2.163)
where
F =

(l—fe)(l + 2 £n R/a) + Zfe (lmfer) £n R/a2

+ fe (l*fer)

fer = fractional electrical neutralization of
the return current channel.

When fe exceeds the limit of Equation (2.161) and Ty < a

- for most secondary electrons, plasma theta currents can be

estimated by assuming that the plasma return current channel is
nearly coextensive with the beam channel, but displaced by a
skin depth, c/w . In this case, secondaries created by further
ionizing colllslons essentlally form a hollow Brillouin-type
annular beam with the beam edge as a cathode and with radial

thickness inversely proportional to 32 and {(y - 1/2)%. Classical
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space charge flow theory for hollow Brillouin beams shows that

their diamagnetism is at most a few percent (Reference 2.1).

We have argued above that the radial electric field of
partially compensated beams can generate substantial diamagnetic
plasma currents and that return current electrons in general may
have energies comparable to the primary beam. The sSpace
charge diamagnetism may ¢greatly exceed classical'space chargéq
flow diamagnetism because of partial charge compensation
behind the penetration front. In order to achieﬁé_éggicient
beam transport, the space charge fields must, of course, be
rapidly shorted out (TN < tr’ the beam risetime)., At pressures
such that Ty 2 2ﬂ/wc, the plasma electrons non-adiabatically
pass through the space charge front and it seems reasonable to
assume that their diamagnetic volume theta currents are essen-
get. If Ty > 2ﬂ/wc the transition will be
adiabatic and the volume theta currents will also be determined

net
by Be

tially determined by B
beyond fe = 1.

The diode flow model which we have previously given,

together with similar arguments for plasma currents, allow
T

us to determine the net ABZ, ABZ , of the beam channel for
™ SR to- The only paramagnetic contribution to ABZ in

general is the volume beam theta current after fe > l/YLZ.
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We obtain

B
L _
' ' T - _ i
rq ABz Fr) z Bz(r) BZ
L] |
21n 25 ' _
, - b 2_.2, _ IE 22,
3§ S 'ewb {a“=-r") = emp (a"-r")
P e O N RPN £ I (2.164)
Lﬁ_ z - ST eb Do L ep : z
Y? where the b(p) subscripts refer to beam (plasma) quantities and
- ch is the perpendicular gyrotational energy. We rewrite
il Equation (2.164):
L 2
2 3 .2 '
Ty o 3b (132 2.2 i¢ .3
1 ABZ (r) 55 B, (1 fm) (a”-r7) + {(Bz ) 10 <BL>jb'[ng(r)
A
g : ' n k .
\ . b 2 i
ljy} _ + Yo (57) fm sin u(r)]} - B,
P _
s Ty St <t (2.165)
' with '
TQ £ = fractional magnetic neutralization
. ' '
fﬁ <BLc> = average longitudinal beam velocity
E
Lo 2 Lo .
g = fah =02 f5r a non-adiabatic anode transition
}*, cos q (x)
L
= tan2 o {r) for an adiabatic transition
§% ‘ . . net
o - <§> is the average scattering angle with respect to B
v net
K B
L tan of(r) = -2_(X)
. Bz
o
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e

4
= - <g >
Yp (1 Bp )

w (3

The beam current density jb is in A/cmz, B, in gauss. A "strong"
sensitivity to the current density and degree of magnetic

neutralization is exhibited by Equation (2.165). As an example

of the equation, let us take fm ~ 0,1, le ~ 5§ kilogauss,
jb = 5 x 103 A/cm2 and g = 0.25. Then Equation (2.165) gives
ABZ(r = 0) = 1.6 kilogauss and the beam channel is net para-

magnetic, On the other hand, if we inject the same beam into a
preionized highly conducting plasma so that fm ~ 1, Egquation
{2.165) states that the channel will be diamagnetic with

ABZ (r = a) E'(,)_200 Qauss. Our estimates have, of course,
neglected space charge induced diamagnetism under the assumption
that N 52ﬂ/mc. 'Finally, we note that when fm + 1, the ancde
window transition may be important in determining the nature of

+he channel ABZ.

A rough criterion to ensure a net diamagnetic channel may be
obtained following arguments used in the derivation of Equation
(2.146). A more general version of this equation appropriate

for a non-adiabatic transition at the anode window is
2

o ) 4
08," (28,7 - 4B, %) (Vlc) (1) ~ (1) tanrza (2.166)
(ABZP)2 Vir v Y/ sin‘a B

Thus, a sufficient criterion for dominant channel diamagnetism
under the assumption that guiding centers follow field lines is

™
!

2-156

,._‘___.‘




| e
| N

f? - © tan § >  % sina{(a) | (2.167)
[ _ _ v

f?_ The remaining task for completion of our discussion of Bz
transport phenomenology is to couple ABZ to beam energy loss.
?w The method is analogous to the Be discussion with z-currents,

and dBZ/dt. We explicitly
T

only now we additionally include E8

consider only one case; namely, when AB® = B, is ‘diamagnetic and

y% dominated by the surface currents associated with gyrorotation.
) The theta electric field is then:

STrAB
Z

" At (nsec) (2.168)

“ | o Ee (V/cm) =

Lf A rough criterion for the validity of previous calculations of

. AB where E
}j z 0

was neglected is

o By (2ma) < 2L (105 | (2.169)

. or
(| | - :
[‘-1

2 AB_ (gauss) < ig__éllll At (nsec)

a

B N B, the breakdown timé, for diamagnetism near the

25 and T, S At < t
) beam penetration front. After breakdown the plasma currents are
[g _ collisionally dominated and in a direction to 6ppose further

‘changes in BZ. Then Ee may be estimated from
- Jbe(t) - Jy, {tg)

- E, =
f G . UJ_

0

(€ > tg) (2.170)
The radial drift velocity of the beam-plaéma-system across

{f BZ lines for the case of a highly ionized plasma after breakdown

is approximately:

2-157




. ' Ey (V/cm) ' '
v.. (cm/nsec) = (2.171)

ro 10 B, (gauss)

. Conditions for Efficient Transport With.B‘ Fields. Our

discussion has related beam and plasma induced chanqes in B, to
space charge fields (f } and the self-magnetic fields (f ) and
indicated the coupllng between these parameters and energy loss
due to AB_. The models showed that when fo. < l/YL2 the beam
channel will be net diamagnetic (low pressure propagation) and
when f ~ 1, the channel will be paramagnetic unless'f 1.

The compllcatlons of the general transport problem w1th B can be

largely circumvented in outlining conditions for eff1c1ent trans-

port in neutral gases. The arguments are very like those regarding

current neutralization without B,, except that we additionally
require the transverse conductivity after breakdown to be high.
Then ABZ is small and losses due to EG are minimized, and space
charge relaxation of the beam may proceed after breakdown with
increasing beam current. The model essentially defines condi-

tions for validity of single particle beam orbit theory.

Recall from Section 2.5 that the perpendicular conduc-
tivity for a Lorentz plasma (electron/neutral collisions or
negligible ion motion) is ‘

~ 1
o, = O“ (2.172)

1+ (Eé/v)z

where G”-is_the parallel conductivity, v is the effective
collision frequency, and EE is the cyclotron frequency associ-
ated with the B, field at breakdown. To minimize net theta
currents, we desire o, large (= o“) in the sense that
2
4ro| a

t N ——— Pt {(2.173)
9 c2 3
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li' where tp is the beam pulse width. This condition translates to:
] )
ry

1. o large at breakdown (or injection with preformed
plasmas) ,

2. wc/v < 1

If we assume the plasma nearly fully ionized (v = Vg i) the
) r

tg requirements Ee/v < 1is _ )
L < 12 D o

b B, Y3 x 10 —E (2.174)
L . “ 7 >/?

1 where Ez is the B, field value at breakdown. Thus, if we assume
o a fully ionized plasma at 1 torr, T, ~ 5 volts, Ez R 9 kG, a
value close to the level above which Stallings observes a
decrease in transport efficiency (Figure 2.45). Whether or not
this criterion is in fact relevant to his data dépends, of

) course, on the plasma parameters. Our guess above appears

- reasonable in view of the minimum requirements on o, for the

|

?

fé-- high transport efficiency at the optimum transport field.

- Equation (2.174) is in general a more severe constraint on the

{ - maximum BZ field than the Lee and Sudan result, (wc/wp)2 < 1.
Also, the condition is independent of whether the channel is

net diamagnetic or paramagnetic,
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2.11 PLASMA HEATING

Plasma heating and/or confinement using intense relativistic
electron beams and their associated electric and magnetic fields
is a relatively new interest of the plasma physics community and
both the experimental and theoretical work to date in this area
is rather preliminary. The major direction of intense beam
technology in the past has been in the areas of efficient trans-
port of beams of.contrblled energy density; beams have merely
provided an energy source for X-ray production or material
response studies with rapid energy deposition. Substantial
plasma heating would correspond to poor beam transport and has
therefore not been of interest. '

Electron beam accelerator technology has advanced to the
point where beams exist or are within the state of the art with
total energies from kilojoules to several megajoules and with
electron enexgies from tens of kilovolts to 20 MeV. Thus beams
represent an interesting energy source for direct or supplemental
heating of plasmas. Also, these beams may be used to collective-
ly accelerate ions (deuterons) giving several kilojoules of ion
energy plasma heating. Another application has recently been
suggested by Yoshikawa (Reference 2.35). He proposes using a
force-free beam equilibrium distribution to generate strong
magnetic fields for plasma confinement--analogously to use of
superconducting rings.

There are, of course, several aspects of potential plasma
heating schemes which affect the nature of the optimum beam and

the problem areas with respect to present day technology. For

.example, if we desire to heat a confined plasma for controlled

, thermonuclear reactor (CTR) application, the gquestion arises
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~whether the beam is to be internally or externally generated.

An externally generated beam immediately confronts us with an
injection prcblem, Wheréas an internally generated beam is
probably more severely energy limited than an external beam,
assuming inductive acceleration. (Use of electrodes in a low
density CTR confinement system would present plasma contamination
problems.) The injection problem appears difficult but feasible.
'The Astron field configuration, e.g., is designed'ﬁo accept and
trap a relativistic beam of relatively low current (kiloampere)
from our point of view. An intense, pulsed beam must necessarily
extract an equal plasma return current from the confinement

system to avoid buildup of large space charge'fields, and al-

though the net current may be very small, injection could result

in a serious distortion of the magnetic field configuration

simply to allow the return current to flow out the beam channel.

The probiem areas are quite different for héating high B8,
high density plasmas with limited or no confinement. Such
plasmas would be of more interest as intense radiation and
neutron sources than for power production. [ Recent calculations
by Eden and Saunders (Reference 2.65) have estimated ~ 109 joules
trigger energy to give useful energy return.] Since plasmas with
densities in the 1017 to 1020/cm3 range and temperatures of 1 to
10 keV require (pulsed) megagauss fields for even partial
containment, and therefore are limited to times at most of the
order of 100 nsec, beam energy deposition rate is a dominant
consideration. The dense plasma focus (DPF), e.g., is a plasma
with limited confinement (50 to 100 nsec) and Mather and Rostoker
(Reference 2.66) and Friewald, et al. (Reference 2.67) have
recently performed initial studies on electron beam enhancement
of DPF plasma heating. Beam injection into the large magnetic
fields of the DPF is also a major problem here. D-T pellet
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ignition with electron beam triggering and with no external
confinement fields has been proposed by Winterberg (Reference
2.68) and further studied recently by Babykin, et al. (Refer-
L] ence 2,.69). Thefmajor beam problem is achieving the required
B power densities; current densities of 108 to 10° A/cm2

Lé appear to be necessary. The present state of the art for

relativistic beams is ~.105 - 106 A/cmz.

e
R

A beam plasma heating technique currently under Study is

S

turbulent heating of low density (~ 1014/cm2) plaSmas. Altyntsev,
et al. (Reference 2,70) have injected a 4 MeV, 15 kA, 50 nsec

3 pd
[

= beam into a plasma with a solenoidal field and report electron
Lj temperatures from 10 to 100 keV at densities from 10ll to 1014/

cm3.. We consider turbulent heating in detail in the next section.

2,11.1 Turbulent Plasma Heating. A considerable effort

)-ﬂ) has been devoted to the study of turbulent heating and anomalous
S resistance effects in discharge plasmas (Reference 2.71).

: Recently several investigators have looked at turbulent heating

N using relativistic electron beams (Reference 2.72) . Basically,

- all these efforts are directed toward enhancing the energy

Ij deposition rate over the Coulomb collisional transfer rate. The
importance of doing so can be seen by looking_at the single

{i electron stopping power, dE/dx, in a plasma. For electrons (test
o - particles) moving at velocities in excess of the plasma electron

(? thermal velocity, '

dE/dx = ___._129.._2___. L (2.175)
. | 2
L ' e e

where wp is the plasma frequency, Bc is the incident electron
{; velocity, L is the Coulomb logarithm (Reference 2.73), and
Z is the charge state of the plasma ions.
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Prentice (Reference 2.74) has evaluated L numerically for'
relativistic electrons (and relativistic plasmas) including

effects due to excitation of longitudinal and transverse plasma

waves. Taking Z = 1, Te =5 kev, np = 1019 cm3, he cbtains

dE/dx ~ 15 eV/cm for a 1 MeV electron. At np ~ 1015/cm3, {CTR

plasma density), dE/dx = 1.5 x 10-'3 eV/cm so the 1 MeV electron

*
range would be ~ lO9 cm. If we consider many electrons or a

beam, this range is reduced many orders of magnitude by collective

effects. The longitudinal electric field driving the plasma
return current after gas breakdown is in the 100 V/cm range,
depending on the plasma conductivify and current density, and
1l MeV electrons are now stopped over 104 cm with a Coulomb
conductivity (u”= Ve i). If one injects into appropriate plasma

r

densities, we may reduce this collective range orders of magni-

tude further by inducing longitudinal electrostatic instabilities.

The plasma conductivity is now lowered by an effectively higher

collision frequency due to instability wave-particle scattering.

As discussed in Section 2.8.1, the beam may generate
electron-ion modes (plasma return currents) or electron-electron
nodes (beam and plasma electrons); i.e., plasma electrons may
scatter off plasma electron-plasma ion waves or plasma electron-
beam electron waves, or both. Let us consider a possible heating
sequence in a beam-plasma system with return current equal to the

beam current.

For simplicity assume a hydrogen plasma, fully ionized at

injection, with an electron temperature T, = 1 volt. The heating

>

process will start with the Buneman mode if v, 2 v (We use

. d te
the same notation as in Section 2.8.1). This requirement is

satisfied if
. 22 . 2
T, < 10 (jp/np) (Buneman mode) (2.176)

¥ The classical electron range amounts to energy transfer to
plasmas well within the Lawson fusion feasibility criterion:
n,T 2 1014 cm™3 sec.
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'
N
i@ with j_ = plasma return current density (A/cmz),-np = plasma
~ density (cmnB), and Te in eV. The heating rate/volume (jpz/g)
[? may be determined from '
i
i 2
nm v n_3kT
d t’pod P e Looa 2
y? 3T 5 + 5 = jp /Ueff (2.177)
. where O£ is the anomalous conductivity equaling wp2/4ﬂ I/veff
1% (sec ), and veff'is the 90 degree scattering time for electrons
h off ES instability waves. Equation (2.177) assumes that the
1? plasma electrons are thermalized "instantaneously.” The Buneman
= mode corresponds to V4 2 V.o SO we assume that the streaming and
{j _ thermal energies are approximately equal, giving
E . | . |
]
% T, (eV) =~ 7.4 x 1021 (EE) vgff (Buneman) (2.178)
E-f 2 :
e where jp = plasma current density (A/cmz)
o
- n, = plasma density (cm_3)
o
Lj. “gff = Buneman mode collision frequency
o 1/3 '
i ~ (R
T\,
."} . . N L
[j For a hydrogen plasma,.vgff =~ 500 an. Substituting in Equation
 M (2.178), we obtain
¥ t
Lob - . 21 B 2 .2 ' .
t_[‘e(t) =~ 7,4 x 10° (\)eff_/np) f jp (") dt
i ' : t
L
t . .
o 24 :
AR . . S :
B o 3.7 ’;/%0 f 5% (£") ae’ | (2.179)
... n p
P ts

: % . .

uﬁn Recall that the electron-electron collision frequency is
) 1836 v_ .. ‘
e e,li

r
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. . 2 .22
until T _(t} = n_j x 1077,
(0 = (3y/n)
The heating rate will slow down when Equation (2.176) is
no longer satisfied as the ion-acoustic transition. occurs when
< Vv, . The ion sound speed is denoted by CS 2 /ETe7m..

C < vw
S d te < 22 i
In a hydrogen plasma, we now require T, ~ (43) 10 _(jp/np)z.
We neglect the drifting energy to obtain a heating rate for the

ion-acoustic mode:

aT_(ev)
e . 22 ¢, 2 IA
Tar T T e x 10 (Jp/np) Verr (2.180)

The units are the same as for Equation (2.159) and viA is the

. , ff
effective collision frequency for ion-acoustic wave scattering.

The form of vi?f suggested by Sagdeev is (Reference 2.75)

T /v '
viB o~ 1972 & (-_-d )w , T > 7 (2.181)
T, \v P e i

- 1 te

Va < Vi
Other authors propose different forms and some experimental data
appear to agree with all of these various forms (Reference 2.76),
Guillory and Benford (Reference 2.42) have looked at the transi-
tion region between Buneman and ion-acoustic modes using a
Lorentzian plasma electron velocity distribution and use an

"optimistic" wvalue for hydrogen:

(0.055)
v ~ i (2.182)
eff 1+ 5.9 vte/vd_ P
They obtain Equation (2.182} by assuming Vogg maximum in-

stability growth rate.
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A lower limit on the plasma density for return current

T ] !
| R PUE-ANE | (‘ r..,—r-n..t
it

anomalous heating follows from our assumption that 3 jb,
- which requlres the magnetic diffusion time, t ar be long compared

to the beam pulse width, tp. If we take ty 2 2tp,

R
S

4.5 x 10t1 ¢

| g(sec™ 1) = . < (2.183)
. : . Ta ) .
P

_ with t? in nsec and the beam radius, a, in centimeters. Equa-
7 '~ tions (2.178) and (2.181) indicate that Vogg * mp, S0
I} g m.%np. The Buneman mode, for example, requires
[ o ‘ 2
N n_ 2 1.75 x 1012 (‘EE) (2.184)
' : P Ta

i
1j A final constraint on return current heating is that the driving
. electron field be low enough to allow the beam to traverse the
i““) - system length, L:
d

- J
i@ _ 'EEZL = e(EE) L < beam electron kinetic energy (2.185)

e We illustrate the above discussion with an example. Let
{j ' ]jb1 ~ jp ~ jg t/t_ where jg is the peak beam current density,
- = 10" A/cm”, and assume a linear current rise with tr = 50 nsec.
QJ Take a cross-sectional area of 10 cm? for the beam-plasma channel
_ and a hydrogen plasma with density of 1014/cm3, fully ionized
I% with an initial temperature of one volt. From Eguation (2.176)

’ we see that if jp ljbl, the Buneman mode would cut off at
EE """ Te = 100 volts, and we see from Equation (2. 179) that we are

' essentially in the ion-acoustic mode throughout the beam pulse.
o Equation (2.180) has an I-A mode cutoff temperature of 4.3 keV,

In view of thé uncertainties in vi?f, we shall estimate the
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heating rate conservatively, i.e., use the smallest collision
frequency in Equation (2.182), obtained by taking (vte/vd) at
the IA cutoff (~ 43)}. Equation (2.183) gives the lower bound on

5:0 2 2.2 x lOlZ/Sec for t R tr = 50 nsec. Substituting for
vi?f in ¢ gives 2.4 x 10 /sec, 80 we are well above the lower

bound. From Equation (2.180)

t .
T (k) ~1.6 x 10° (L) [ £3/3 at ~ 27 volts
e r Tt . 2 :

t

r o

This temperature is, of course, not interesting for CTR applica-
tions. If we use an optimistic colllslon frequency, (vte/v ~ 1
[Equation (2.182)]), o0 =~ 5.6 x lO /sec, and we only marginally
satisfy the lower ¢ bound criterion. 1In this case, Te(tr) ~ 1.1
kev. The sensitivity of the temperature estimate to the ef-
fective collision frequency is apparent. For a given Vogf? the
temperature is optimized by decreasing the plasma density to the

lower bound.

The remarks up to this point have been directed toward
return current heating. Simultaneous e~e mode heating may
occur, or even dominate the heating process, provided the beam
velocity spread is not too large (Reference 2.77). The Singhaus
criterion (Section 2.8.1) requires for e-e instability growth

Vv, \2 w n .
b <<lo.7 B b : (2.186)
Vo VoY,
P
where

n, = beam number density

v, = Ims beam longitudinal velocity spread

v, = avefage longitudinal beam velocity
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Equation'(2.186) further indicates that the e-e mode may be
initiated by return current heating if not originally present.
Both Vo i and U;?f are decreased by increasing temperature.

r

Assuming (vb/vo) ~ 1, Equation (2.186) gives

O _ |
v < 4 x 10 (v, /v_ ~ 1) (2.187)
— b’ "o _
p
with the densities in cm 3. Taking n, ~ 2 x lO12 cm3 from the

example above and y =~ 2, v < 4 x 109/sec. If we determine “é?f

from Equation (2.182) with vte/vd ~ 1, Equation (2.187) is

satisfied for both v_ . and vB__.* The heating rate is’
e,i gff

' . 2
dT _ (eV) 3
e _ 22 P a-e -
“--'-a--_E'—"— = 1.5 x 10 (n ) \)eff : . (2.188)
P
where ' h v 2
e-e b Q
v ~ 0.3 (___)(-—-—) wo - v/2
eff Yn Vb ol

a maximum value. The parameters of the example give

ee

~ 0?2 ‘
Verg ¥ 1.7 x 107 /sec - v/2

i?f) v2§f ~ 1.7 x lOg/sec.

The additional e-e heating then gives Téee) = 4,2 keV and the

and, taking the minimum value of v

e-e mode is dominant over the I-A -heating in this example.

If we consider a confined system where plasma return cur-

rents have decayed, estimation of the e-e mode heating requires

*
We are assuming a linear superposition of e-e and e-i modes.
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a.knowledge of the level of turbulence; i.e., the amplitude of
the ES waves. Lewis (Reference 2.44) discusses the heating in

thé linear limit.

2.11.2 A Plasma Heating Technique Using Collectively

* ; .
Accelerated Ions. Recent generator and diode development work

has shown the feasibility of constructing electron beam ac-

- celerators with several hundred kilojoules of beam energy _
{Reference 2.78) . One such design would employ a-iarge annular
cathode, a design particularly convenient for collective ac~

‘celerations of ions. We describe a technique for plasma heating
using collectively accelerated deuterium ions. An important
aspect of the scheme is that it utilizes only reported experi-
mental results both for ion production efficiency and plasma |
parameters. Ahy optimization of ion fluxes generated by the
electron beams would, of course, increase the efficiency of the
system. In view of the small effort in this area to date, it is
reasonable to assume that further experimental investigations
directed toward understanding the collective ion acceleration
process will lead to higher efficiencies. This plasma heating
techniqué must ultimately be compared, for practical purposes,
with efficiencies of plasma heating using high power CO2 lasers

or the electrons themselves,

A 300 kJ electron beam accelerator, for example, can be
used in a low pressure neutral gas mode to accelerate deuterons_
to energies of 2 MeV. With many small copper pipes emanating '
from magnetically isolated cathodes, evenly spaced around an
annular rihg, we can assume generation of lO14 deuterons/76 ka
with 500 kev electrons or lO14 deuterons/100 kA for 1 MeV elec-

trons. These numbers are obtained from published data for ion

* .

This material has been reported in S. Putnam, An Intense Pulsed
Neutron and Kilovolt X-ray Source, PIIR-33-71, Physics Inter-
national Company, San Leandro, Ca., July 1971.
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production using v/y = 2 as the criterion for reproducible

deuteron energy from each pipe accelerating channel (Reference

2.79). Thus, a 1 MeV machine could be expected to produce
{E 1.92 kJ of deuteron energy and a 500 keV machine could produce
5.06 kJ.

L) ' o 2-171




We can argue the above experimentally reported deuteron
numbers from simple physics, somewhat independently of the
acceleration mechanism (see Section 4). The number of accelera-
tion ions, Ni’ can be estimated from

_ 2 |
Ni = nb fé wao L (2.189)
where
n, o= electron beam density
fé = fractional electrical neutralization of

the ion bunch :

a, = average beam radius

'L_ = bunch length at the start of acceleration
For 2 MeV deuterons, Bzon' the maximum ion velocity/c is
~ 4,6 X 10—2. During acceleration (in the case where the beam
front and ion bunch are coincident}, BE ~ Bion, where BE refers

to the electron streaming velocity. From Equation (2.189),

N, > 4.5 x 10° F LI (Rn) - (2.190)
ion e b
where
‘ I, = beam current
4 14 — : —
I£f I. = 7.8 == 107, N, = 3.5 x 10 f L. We know that £
b ion e - e

exceeds l/Yz,_let us take‘fe A 2/Y2- Then for 500 keV electrons,

N. 2 1.8 x 10 L © (2.191)
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The bunch length, L, should be of the order of the beam radius
(~ 1 cm). The ion number could be doubled if the beam pulse
were long enocugh to accelerate two ion bunches. These simple
arguments imply the perhaps obvious conclusion that higher ion
numbers are obtainable from higher-current, lowér—energy electron 

beams. Also, the estimate suggests that if desired ion energies

- are not too high, we can use higher currents per accelerating

pipe (and therefore fewer pipes) without degrading the number of
accelerated ions. The current value per pipe above was chosen

to stay within experimentally verified parameters.

The individual pipes are to be geometrically focused toward
the heated plasma region with or without an intermediate trans-
port system such as a lineaf pinch. The ion bunches and electron
beamlets would be transported at first within the pipes until the
pipes converged to contact and then would be transported simply
in a large tapered drift chamber. A tapered linear pinch could
be used for additional focusing as a final stage before plasma
injection.

As an example of an application for this intense ion source
to plasma heating and neutron production, we cohsider a readily
obtainable plasma which possesses many desirable features for ion
injection--the dense plasma focus (DPF). The magnetic field con-
figuration of the DFP increases the ion aperture up to several
centimeters, and contains ‘a 1019 to 1020/cm3 density plasma at a
few kiloelectron volts over containment times from 50 to 100 nsec.
Some experiments are already underway using electrons to heat the
focus plasma, (Reference 2,.66),but there are two serious problems
in using electrons rather than ions. Perhaps the main difficulty
with electrons is injection. The 2 MG or so maghetic field'

containing the plasma reflects all but a small fraction of the
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electrons along the axis if the electrons are directed toward

the anode from the exterior. If the electrons are injected
through a hole in the anode, the field defocuses the electrons. (j
Secondly, the electron energy deposition range at 1 MeV is L
2 10 meters, and collective enhancement of energy deposition (1
does not appear to be significant with these plasma parameters [
unless the beam has a very small velocity spread. The velocity' .
spread criterion for electron-electron instability mddes (the - lé
Singhaus criterion) would refer to transported electrons enter-
ing the plasma focus at any one time. 1In view of the defocusing (
~effect of the DPF magnetic field for anode interior injection, | B
it appears difficult to argue a small velocity spread in the '
plasma, even if a sufficiently cold beam were injected (Refer- !

*
ence 2,67). [

In contrast to electrons, the 2 MeV deuterons have a range .
of X 4 cm in a lDzo/cm3, 1l to 10 keV plasma, and can be focused &wwé
by the 2 MG magnetic field if injected through a hole in the
anode. (The Larmor radius, ~ 1.4 mm, is the approximate radius {?
of focal plasma.) Thus eight to nine radial oscillations of the ‘
deuterons in the (typical) ~ 1.5 cm length of the focal cylinder -
will deposit all their energy. Both the ion energy and specie L]
can be altered, using this scheme, to achieve complete energy :
deposition within the plasma region for varying plasma parameters; tj
in fact, the ions themselves can be used as a diagnostic tool to

characterize the focal plasma and "tune" the system. 1?

Approximately one-tenth of the injected ion energy, or
190 to 500 joules, will be directly transferred to the plasma

*

Collective enhancement cf electron energy deposition is suggested
as a plausible explanation for observed neutron enhancement with
electron beam injection inside the anode.
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ions, and if the plasma contaimment time is ~ 100 nsec, an
additional one-third or more of the ion energy can be trénsferred
via electrons. So it does not appear unreasonable to expect that
over ~ 60 nsec -about a kilojoule or so will bé transferred to the
ions. A tenfold increase in the ion temperature could be at-
tained with a DPF having a focal plasma energy of 100 joules and
the 14 MeV neutron production rate in a DT plasma would be multi-

plied by a factor of 10°.

'A simpler scheme for X~ray production is, of course, to seed
the plasma with higher 2 ions to enhance'radiation,-in which case
we can at leaét expect all of the injected ion energy to be radia-
ted. 1In this case we could vary the ion pulse width up to
100 nsec or so by small variations in the ion energy, produced by

altering the acceleration length in some of the pipes.

Ions from a 300 kJ pulser thus offer the possibility of

- providing several kilojoules of X-ray energy and an intense

neutron source. The estimates above assume a 1 percent electron
beam-ion energy transfer which may be improved by a better under-
standing of the acceleration process and/or by multi stage
acceleration chambers. Numerical calculations of the effective
ién aperture of the DPF magnetic field are warranted as part of

a feasibility study. Diode ion sources may also be used to
generate the ion pulses for injection into a DPF or other high
density plasma configurations; we have considered collective
acceleration to utilize experimentally reported production

efficiencies,.
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SECTION 3
ELECTRODYNAMIC CALCULATIONS

3.1 BASIC EQUATIONS

The purpose of this section is to formulate the Quadrature
of the EM field equations; i.e., to express the fields in terms
of integrals over beam—current—source functions. We do not
explicitly include external fields, although thefexternal field

‘of a linear-pinch transport system may easily be superimposed

upon self fields for aﬁalysis of the current-neutralization
problem. Several investigators have considered EM fields genera-—
ted by an undistorted beam pulse passing through an infinite
plasma. Chandrasekhar (Reference 3.1) and Yadavilli {Refer-
ence 3.2) have evaluated field'expressions in the wake of the:
beam pulse and Zwick (Reference 3.3) has investigated the region
behind the space-charge neutralization front. The general formalism
used by these authors can be used, of-course, to determine
fields over all space. Somewhat different techniques have been
used more recently by Hammer and Rostoker (Reference 3.4} and
Cox and Bennett (Reference 3.5) to look at the same problem.
Our work is directed toward géometries more relevant to experi-
ments of beams and drift chémbers; in particular, we investigate
the effects of finite boundaries and finite beam risetime. The
field expressions are derived for the following boundary condi-
tions:

l. Long pipe with no endplates

2. Long pipe with a single endplate

3. Closed cylindrical cavity




In these three cases the plasma conductivity is taken to be
constant. We also formally evaluate EM fields for the case

of a conductivity varying with distance behind the beam front.
CALCOMP plots are included for EM fields of a finite risetime
beam in a long pipe filled with constant conductivity plasma
(the current neutralization problém) and for a beam entering a
.long pipe through a donducting plate (anode window), i.e., the
beam-injection problem. A summary of the results of these

calculations has been given in Section 2.6.

We begin by formulating a qauge useful for problems with
azimuthal symmetry and unpolarized beams (no theta component

of the current density). The Maxwell's equations are

vxB = 21 (3 +3‘)+£3§ . (3.1)

c b p ¢ 3t
v E = 41 (p, + o)  (3.2)
VxE o= - %-g-g (3.3)
and ' V+B = 0 | | (3.4)

The "b" subscript refers to beam guantities and "p" refers to the

plasma counterparts.
take

If we assume a scalar conductivity, o, and

= oE, ¢ = olr,z,t} ,

> 1 3% % 4m0 3B Al [V x 5, + Vo x £l (3.5)
vaxB+—-—-—-—B+—2-—a—t='6" b *
c2 atz- c
2 4 v 47 = 93 an 33b 6)
103 -+ bilRe] LU fg - _ =20 E.l_ (3.6
Vv xVxB+ 5 —>3 E+ —= -5¢ t s E 3 2 9t
¢ 3t c c c
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We immediately see that B = By ée, E = E 8
Vo = 0,

and that if
chever, even if Vo = 0, it is
not convenient to solve these equations directly since the E_

EZ equations do not decouple in cylindrical coordinates.

+E &,
r z z
the equations decouple.

and

Perhaps the most convenient approach is to uée the vector and’
scalar potentials, 2 and ¢, with

B = VxA&
5
E - "%“’%g’% (3.7)
We obtain
s 2...).
VXV x A+ E%E %% + ii-é_é. =
c ot
dm 3 _ % (4mog , 1 39, 4n¥os
c Jp 77 ( c  T¢ at) * (3.8)
The radial component of Equation (3.8) is
# : 2 2
: 5 Py 4+ 9 By +f4m0 13 Y13 , _
L2 dzor c c 3tfc 5t “r
2z
a7 3 4ng 1 o 4m 3o
c Jbr T 3r ( c toae) Fo e (3.9)
:and the z component,
15 (T _ 13 roh, + (Amo . 13 V1 OB, -
r 3r \ 9z r 3r \ or c c ot/ c?
47 3 o, 1 39 ig(gg) (3.10
c jbz T 3z ( c T C at)¢ o 5z) ¢ (3.10)




We now choose a gauge: A 0. Then Equations (3.9) and

(3.10) yield

xS - s [aro . 18 - -
525r ~ ¢ b~ ar\c tewg) T ¢ (311
3A , oA
1l A To 13 1 z _ 47 . _ _
'E'ﬁr_r"+('?:_+c'§'€)€§"—_c Iy, (3.12)
2 (419, 12, 4 dn 20 '
EF ( c + c 8t)¢ + c (az ¢ (3.13)
If ¢ = o{t),
3A
dng 13 _ Ar . _ z

where f(z,t) is an arbitrary function. Substituting Egquation

(3.13) into Equation (3.,12) gives

2 2
_?__I}E_}_Q_(raAz)+4ﬂcaAz+l GRS | S
" r or R} o2 9t ;f at? c “b, dz
\ r (3.14)
_— - ™
Q = = ./. iy dr' - f£(z,t)
° r

Equations (3-13) and (3-14) are our basic equations; we need

only solve for Az = A, inasmuch as ¢ is determined from

& = c e—f4wcdt' ./ét' e4ﬂf0dt"[_ %% + Q] + H(r,z) (3.15)

where H is an arbitrary function. Equation (3.7) now gives




= - 9A
By = ar
= - 3¢ : '
Er F | o (3.16)
E = —-.E.qi—l'..a_é
Z 2z c ot

L e L 7 Ef

.3.1.1 Green's Functions. Equation (3-14) can be solved

using Green's function techniques for several interesting beam

problems. If the beam travels at constant velocity v in the

| PSS B

. ' ‘positive z direction we can rewrite Equation (3.14) in terms of
Lﬂ the variable u = y(vt - z), where u is the (positive) distance
behind the bean front:

2 32 5 | |

(““ Vr - =3 + 2k s-ﬁ*) A(u,r) = S(U,_r) {(3.17)
ﬁ k = ZHUEV r O = constant.
= _c
rg Let A = W eku;-then
i )
v2+2_ _k¥)\w =-s5e* = gi(ru) (3.18)
ﬁ] T au : ' : _
L

The Green's function for Equation (3.18) satisfies

i 2 .
| Vrz + Q_E N -éifzﬁ_l § (u-u')
I - oua
L and o0 o : . _
[1 - W = f r'drx! f du' G(r,r',u,u') s'(r',u")
I ' .

[ . 0 -co

8 I .
{j The evaluation of G for a beam in infinite space, G , is
simple using standard techniques: '




. L oo X'.e— }}\2-}-_]{2 !u_u_, I |
el = - E; L= Jo (Ar) Jo_(Ar') dx (3.19)
| o hZa2 | I

'where.JO is the zero order Bessel function. Anothér useful case
which can be obtained simply is the Green's function for a beam
in a long conducting pipe of radius R, filled with plasma of

constant conductivity:

_ K r rr?
), ()
Jo (.R ) o) R

(3.20)

A, is defined by J_(A ) =0, n=1, 2, ... . The boundary
condition E, = 0 at r = R is satisfied by the vector potential

defined by Egquation (3.20).

The two G;een's functions above solve the inhomogeneous
vector potential equation [ (Equation (3.14) when the- source
furniction, 8 = &(r,vt - 2)]. If the beam'charges'are'accelerated,
the problem is mdre difficult and we use a slightly different
technique to solve Equation (3.14) for 8 = S(r,z,t). Again we
assume a coﬁstant conductivity plasma and take the case of a

long conducting pipe. Expand A and S in radial modes:

- i ATy
S (r,-z,t) = Z Sn (Zrt)- JO (_%_)
| n=1 ) (3.21)
S - : Anr _
A (r,z,t) = A, (z,8) 7 (“ﬁ—)
n=1




where Jo (ln) ='0} n=1, 2, ... n. If jb or fg-jbr dr' are
' Z

not zero for r = R, we define f(z,t) = £(R,z,t) so that S(R,z,t) = 0.

Equation (3.14) gives

1 o 2 2 r\2 '
g P o d7oc 3 n _ ' ey
[_ Z 4+ L .+ ;i_ — (__) ] An = Sn(z't) (3.22)

ONPJ

822 Bt2 ot

- Taking the Laplace transform with respect to z + s and t » p,

{? _ we obtain
S (p,s)
2
0
2 1 n
- [:": (prznstye (c—)]

1
- .
[J : + (homogeneous terms involving initial

n

L A (p,s.} = -

(3.23)

r} conditions and boundary conditions at z = 0},
ot

- : X 2
| 2 n)-2_ 2
'(/j) o w "= (R C (270}
(5 ' We take the homogeneous terms to be zero, since the method pre-.
\ sented in the closed pipe problem below (Section 3.3) allows
-(} superposition of the proper homogeneous solutions to satisfy the
i
1

boundary conditions at the cavity end plates and the initial

* * n
conditions. The inverse transform with respect to z gives

i z S(p,u) sinh[%\/(P’l'ZW)zwnz (z—u;I |
! An (p,z)_ = (—c)_“/” du
A \/(p + 2102 4 o 2

*

In other words, by using Equation (3.24) for the solution of the
inhomogeneous vector potential equation which is the complete
solution for a pipe without endplates, we can obtain the solution
. for an arbitrary current distribution in a closed cavity by

o adding homogenecus solutions using the method of Section 3.3.




Finally, taking the inverse transform in t,

Z

_ | . |
) f du - f ds S (u,s) o210 (t=s)

An (t,2) = (
. 5

Nl q

where H is the Heaviside function;
H(x) = 1, x~>0
= 0, x <0

CIf w2 <0, Equation (3.24) is changed by replading Jo by Io’ the

modified Bessel function.

- We complete. this discussion of EM quadrature formulations by
including for reference the well-known Gréen's function for a
static charge distribution in a closed cylindrical.cavity. This
static potentiél.is useful for determining the EM fields in a

cavity when ions are present before the'gas breaks down and current

neutralization effects are important. In other words, before break-

down the EM fields can be approximated by a superposition of the
beam fields (obtained with ¢ = 0) and the electrostatic fields of
the ion charge distribution. We desire a solution of

V2¢ = = 4mp,

. [Jo (mn \](t-s)z -  (-Z%E)z> " ﬁt-s)_ - (553)] . (3.24) .

PR,
h H
L

i .

-




with B.C. | ‘
LL %% (+R,z) = 0 ' - (3.25)
Lg .%% (r,0) = %% (r,L) = o0,
[E L is the length of the cavity. The Green's function satisfies

V2G = -4ﬁ[6(r-r')/r]6(z-z') and

Ll - R L | C |
{T- ' o = -/- r' dr' “/AZ'G(r,r',z,z') p(r',z').

(o] (=)

S{r-xr'")

Using the representation of -

- . S (r_rl) B 2_ z l (J\nr)" . (Anr' )
r\) _ - = P Z J R J.Q R

’

. 20
| R n=1 [Jl (Ar)]
{% we find
- ' - o (MRt lnrf _
- 87 Jo \ B/ \ R
-{;' G (xr,xr', z,2') = = E : - (3.26)
L : _ :

n=1

A, [Jl(xn)Jz sinh (iﬁi)

‘ A A
sinh‘(—ﬁ)z sinh §E (L - 2'), 2 < z!
A

L * n }\n _
. sinh " (L - z) sinh T z', z > z'
-]
{1
L
[
e
b
L
e
)
B 3-9




3.2 EXACT EM FIELDS FOR A BEAM IN A LONG PIPE FILILED WITH .
CONSTANE‘ CONDUCTIVITY PLASMA--THE CURRENT NEUTRALIZATICN : é
PROBLEM _ , U
We discuss the exact EM fields generated by an undistorted ij

‘beam passing through a long straight conducting pipe of radius R, |

filled with a gas of conductivity ¢, and present CALCOMP field - i

plots. These fields are of interest in low temperature beam

transport problems with a pre-ionized gas or in multiple-pulse

PR
I
[

experiments where previous pulses have ilonized the gas. We allow
a pulse with finite risetime -and explicitly evaluate fields for the

-

case of an exponential current rise. The current density profile in

ALl
1
7 (+)

a function which gives closed expressions for the fields. i

radius is taken of the form

3.2.1 Assumptions {w~\

a. The gas pressure or plasma density is high enough to {}

justify using the concept of conductivity (p % 0.5 to 10 Torr).

b. jbe = jbr = 0; i.e., the radial and theta beam current lj

density components are negligible.

c., Azimuthal symmetry.

- ‘ .
The material of this section was reported in S. Putnam,
Theoretical Electron Beam Studies, PIQR-105-3, Feb. 1969,
Physics International Company (submitted to DNA).




-
Lt

A N

L a. Jp_=- CyJ, (R— ) g (u);

[ g = (1 - %™ ,u>o0

(3.27)
T- = 0 r 1 <0

\v—{ ’

where u is the distance behind beam fronts (positive)=y(vt-z}, ¢

| :
1; is the current normalization constant, A, is the first zero of I

F o

the zero order Bessel function » 2.4. Figure 3.1 shows the radial

-{E and u-dependence of jb .
1 . ) ) 2z

4 ' Figure 3.1 The radial and longitudinal profiles for jbé.

R,

The radial form dependénce of jbz is chosen for mathematical
| ' simplicity, and because it has the appealing prqperties of a
| maximum current density at r = 0 and zero at tﬁé pipe radius.
.Also, this zero order mode will usually doﬁinate the EM field

expressions with more general radial profiles.




3.2.2

Basic Equations and Discussion of Model.

The

equations that the EM fields satisfy with the above assumptions

are

1 f Y 2% L1 3%, amoa ),
. T 9r\ or 2 3 2 2 t
9z c” a3t c
dmo 19 .
(T+Eﬁ')¢ =
_  _ 99
Er = ~ 37
B = —%—i
z 92 c
__ 8A
By = =37

where
¢ is the scalar potential

oa
at

o is the conductivity (a constant).

am - )
(3.29)
(3.30)

A is the z-component of the vector potential

Rewriting Equations (3.28), (3.29), and (3.30) in terms of the

variable u gives

1"l

(3.31)




[ i
Lt -

1
Lizemeny

P

e T e

;
{
.

and Equation (3.31) reduces to
L2

2 )y :
[—su—z+2k—§-ﬁ+(R—l)]A(u)

The scolution of Equation (3.35) is

Il

-£u
¢ = & ./~ e®s %A a , € = 2k_
B . as Y252
= 3¢ _ 4 2A
Ez - Y[ u 8 au]
We now take ' A = J %) A{u)

(— %1) clg.(u-) = S{u)

u
Alw) = L {Ie—(/f-k)u‘}f e(/— “k)S'S(s)ds

2/E

_et (VE+Kk) uf

+oo

| 2
2 1

Substituting in Equation (3.35) for
Egquations (3,.30) and (3.34) gives

— o0

u

e~ VT +k)s's(s)ds}

S(u) and referring to

(3.32)

(3.33)

(3.34)

(3.35)

(3.36)




- LA A n,u
By =(_%11) Cl'(‘ﬁ'l')Jl(E‘l“r) y e ? w0
, 2VE  n,(n,*o)

_n 11
—i—- Ly L (l—e . )
2/ "2 ™

- +
nl a n2 o

(e-au_e-nlu) .'e—au :
- : - ] ;, u >0

It

where ny VE -k, (>0)

VE + k

Ny

Similarly, using Equations (3.30), (3.32), and (3.33),

nzu

A A ‘
_ 4m 1 ( 1 ) o e |
E. = |- =)¢c, =) d,{l=r~ u< 0
t ( C) 1 (R) I\ R [281/5 (e+n,) (n2-+0t)]

(3.37)

. | 4 A A -gu . - ~-gu
= (“%1) €1 (ﬁ‘l*) Jl(R_l r) — | ey T ( fof> = o
| 2gvE | N2 Na/ My - N3 )
(1)
{ + . - -
. Ny n2) (e~ OU_g~EY, a0
(nl"a) (n2+a) _ (e-a)
. J
Y
2
(2) (3.38)
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I

and finally,

A C n,{(u) n
s v (R 8 ()T [k - d] e o
-nu —eu)
_ v J (_}_%4ﬁ Cl { o [ 1 ny° mEee - ee” °Y
7 o \R Jo— B {n,-a e-n, . (n,¥a) (e+n,)
2vE \1 § BT 2 2
1
(_l)(nl+n2) 1 -au -gu
— ae - ge
(nl-u)(n2+a) E—0 . )]
. v .
(2)
-gu nlu
e ae T e o ~ou
- Ble + e , u >0
T]l"'Ol- n2+01
\___Vﬂ__J

At this point, we remark about several properties of the

above field expressions. As expected, Er vanishes at r = 0, EZ

is a maximum at r = 0 and vanishes at the pipe radius, and

By = 0 for r = 0 and increases out to r = R. The electric fields
*

decay exponentially to zero behind the beam front, whereas B

8
approaches the value from the beam current only. The fields

extend in front of the actual beam head, and are attenuated in

front of the beam.  The eufoldiﬁg length in front is L = 1/vy
(/§2 + ()\l/R)2 + k)_l, indicating the effects of both the plasma
relaxation length (1/k) and the geometrical factor, R/Al, If

g = k 20 in the medium, as would be the case near the head of a

beam ?ropagating in a neutral gas, L = 1/y R/Al.

*
When ¢ = k = 0, Er does not vanish far behind the beam front.
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The field configuration-moves with velocity v, the beam velocity,
and the penetration ahead of the beam is compressed or expanded

about the beam front depending on y. As vy increases, the fields
compress about the head, and in the limit ¥y > o, the leading edge

is "blunt."

The field eXpressions for u > 0 change form when the beam

drives the tube plasma at resonances; i.e., when any of the
. * -
denominators in the eguations vanish. For example, if Ny = o,

Equation (3.37) for BS with u > 0 becomes

= (:?:"TL) < (%;) ! ('12"1" r) "2",175" {ﬁl'; * %q (l‘e_ulu)

B
6'“1 - .
. -
- e _ & ,u > 0. (3.40)
n2+a

The resonant forms for E., u> 0 are given in Table 3.1,

Refer to the numbered terms in Eguation (3.38).

All expressions in Equations (3.37), (3.38), and (3.39), are
finite as given. We merely rewrite the equations in a more
convenient form at resonant conditions for use in computer
evaluation of the field expressions. The term resonance is
used because the beam current drives the plasma tube system
at eigenmodes of the homogeneous vector potential eguation.




{ :
o R —

S

=
N

Vot

}
e

SN 4

[
Lo

_ TABLE 3.1
'E_ RESONANT TERM REPLACEMENTS

Resonance Replace By

ny = o
: _ 1+ 2 -gu - _=-gu
_ ' . (nyta) (e+a)

u.e-au

nl o = € 1+ 2 ¥ o

. 2
ng #a ~hpt

1 - s u e

e =1y ' nl_
n, # o N+

: (2) =ty v e
£ = 0o 1 n2

Finally; we look at the resonant forms for E  with u > 0,

Equation (3.39). Again referring to the numbered terms and
using Table 3,2,.the‘EZ equation changes may be obtained for the

various resonances.




A

TABLE 3.2 ~
. .
EZ RESONANT TERM REPLACEMENTS -
_ _ )
l i
Resonance Replace With -
—— - [
ng = o | | T L
' 1 yoe %P 7Y
(L) + (2) . -
cHa - TR
(3) e-alu (G.u— B ) - ?_"
ng = o N ;
' 1 ou
(1) + (2) (n +a]e (au-1) ;
€ = 0 2 L
ou N
(3) e (+au-g) i
n, # o N -n,u i
(1) =) e (nqu-1)
£ = 1 1 I
l ‘1!
f
n; #a _ |
(ny+n,} :
: - 1 72 -qu _
c=a @ (y=a) (ny¥ay ©  (eu-d)
P
I
ik
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V| p

R

The above equations have been programmed to obtain CALCOMP -
plots of Be} Er; and Ez for a given set of a, k, Sf.ki/R
parameters, including all resonant conditions. Several plots are

given below. To obtain field values use

B, = (-) B THETA (4“)c (Al)J (ll~ ) (
6 ¢ 't1 ‘g /Y1 \g= ¥/ (gauss)
A A _ _
— 4q i 1
an A
E. = (-) EZ == ¢C Iy (ﬁ— r) x 300 V/cm

z c 1

where B THETA, etc., are the ordinates of the plots, and

. I peak(amps) A.c . S
c — b 1 1 ' (3.42)
1 20T R2 Jl(ll) E :
4 7mC
and cl = 0.923 IE/Rz, R in cm.
If Ipeak = 5= l_O4 amps, 4wcl/c = 4,6 x 104/R2, and, e.g.,
A X B
E, = l.4x 10" —% Jo(ﬁl ) EZ V/cm .
_ R _

We also plot a function that indicates whether the assumed
beam profile function is constrictive or divergent; i.e., whether

the radial force on the beam electrons is inward or outward.
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The radial force on a beam electron for constant z directed beam

velocity, F., is

F. = =-e [Er-— B Be] ' (3.43)

Thus, if Er‘_ B, > 0 the beam electrons experience a pinching force.

_ |
We have
Constriction: Er - BBe > 0 or (ER - BB THETA) < 0
Divergence: E - BBB < 0 or (ER - RB THETA) > 0

A plot of (ER - BB THETA) = ERBT accompanies the field plots for

each case below. Table 3.3 gives the parameters for the graphs.

TABLE 3.3

Case o R k hl/R
1 107° 0.7 6 1
2 - 1072 0.7 0 1
3 - 1072 0.7 . 49,995 1
4 1072 0.99498  49.995 1
5 1072 0.7 6x10* 1

2

The o value 10 “ corresponds approximately to a current two

e—folding time of 7 nsec¢. We have taken two B values correspond-

ing to ~ 200 keV and 5 MeV electrons. The three k values correspond

to conductivities of

3-20
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= ey T
i b b

[ |
H— |

I

------

k g

0 | 0 | (vacuum) - _

6 3x1010/sec 0 (weakly ionized gas)

50 2.4x1011 (intermediate conductivity)
6x104 1014 = 100 mhos/cm (fully ionized plasma

of ~ few eV temperature)

The graphs exhibit many interesting features with physical

'application; First of all we note that Ez is small and negative

for u < 0, and reverses sign when ¢ # 0 just behind the beam
front. Recalling from Equation (3.41) that the graph EZ values
scale directly with EZ at the center of the pipe (r = 0) where

JO = l:1 the field peak for caze 4 (5 MeV electrons) with Ipeak =
5 x 10 ‘amps, e.g., is = 9x10° V/cm. Such an Ez field would, of
course, bunch electrons near the center of the beam, with the
maximum bunching determined by the electron kinetic energy. Near
the pipe wall where Ez is zero, the electrons would precede the
center electrons, suggesting the formation of a current sheath
near the pipe wall in front of the beam core.* Beam electrons
would be bunched near the center until Er rises to overcome the

V x B force (ERBT > 0), when electrons would be lost to the pipe..
In other words, we see the crude outline of the beam penetration
process and a possible ion acceleration mechanism near the beam
front. The actual ion energies attainable may be considerably
higher than the primary electron kinetic energy, depending on the
duration of the fields or the trapping time. The duration
depends on the effective penetration velocity in the medium and,
for the cases where the beam ionizes the gas, the breakdown

distance. We consider these questions in more detail in Section 4

This variation in E, with radius points out an essential dis-
tinction between beams in large cavities and in pipes with radius
nearly equal to the beam radius. The current sheath effect in
pipes has many interesting implications for stability and beam
bending. . '
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The By ploté indicate the time or distance behind the beam
front over which partial current neutralization decays and thus | LE
where the B, values approach those of the beam only. As B THETA |
approaches (nl nz)—l, plasma currents become negligible. : i%

A finite beéam length as well as multiple pulse fields, or [
any other desired superposition of currents may easily be -
calculated for the assumed radial current function of the model. i
The results giVén by the model may be expérimentally verified by Li
low pre-ionization of the gas. We can ensure that electron

avalanching will not occur,. and therefore that the conductivity ' }é

remains roughly constant, by keeping the E-fields below deter-
mined levels for a given gas pressure. Equations (3.37), (3.38), ??
~and (3.39) then directly give the required conductivity to | _ E
achieve this criterion. The wall currents, plasma neutralization}

etc., are given by this theory.
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Parameters:

[

Case 1.

Weakly Conducting Gas

TE ~ 3 x lOlo/sec A

-

{E E = electioﬁ energy = 200 keV

3 R = 2.4 cm

i

" .t ~ 7 nsec

,»--;_ T

L]

N Ig = 5 X 104 amps
i

1\ - By(ryuw -~ -8 x 10° J,(r) B THETA (gauss)
(] E_(r,u) = - 2.4x10° 3 (x) ER (V/cm)
Lo :

!g By (r,u) = - 2.4 x 10° J (xr) EZ (V/cm)

3-23
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Parameters:

Be(f,u)
Er(r,u)

EZ(r,u)

Case 2. Vacuum Propagation

t = 7 nsec

I = 5 x.lO4 amperes -

- 8 x 103 Jl(r)_BTHETA (gauss)

6

- 2.4 x 10 J,(x) ER (V/cm)

- 2.4 x 106_J0(r) EZ (V/cm)
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Note that EZ is in direction to accelerate beam electrons. {f
Space charge field dominates inductive component. ~
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Case 3;

Parameters:

Be(r,'u)
Er(r,u)

Ez(r,U)

Intermediate Conduéti#ity,‘Low Energy Electrons

a -
R

B o=
‘R =
P -_

= =8 x 10
=2.4 x 10

-2.4 x 10

2.4 x lOll/sec =~ 0.24 ﬁhos/cm

200 kev

2.4 cm
7 nsec

5 x 104 amp's-

3 Jq (x) B THETA (gauss)

6 Jl(r) ER (V/cm)

6 J,(x) EZ (V/cm)
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Case 4.  Intermediate Conductiviﬁy,-High Energy Electrons

Parameters:

lé. = 2.4 x lOll(sec = 0.24 mhos/cm | | !
E = 5 Mev

R = 2.4 cm’
t. o= 7 hsec

P = 5x 104 amperes

,ﬂ-ﬂ
P
j y

3

Be(r,u) = =8 x 10 Jl(r) B THETA {(gauss)

Er(i,u) = -2.4 x 10° J,{r) ER (V/cm)

Eglra) = -2.4x 10° J,(x) EZ (V/cm) | | | if
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Parameters:

Be(r,u)
Er(r,u)

E, {(r,w

. -Case 5.

- 8 x 103

- 2.4 x 10°

- 2.4 x 10

High Conductivity

= 1014/sec =
= 200 keV
= 2.4 cm

= 7 nsec

5 x 104.amps

Jl(r) B THETA (gauss)

Jl(r) ER (V/cm)

6 Jo(r) EZ (V/cm)

100 mhps/cm
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' *
3.3 THE CLOSED CAVITY PROBLEM .

3.3.1 Introduction; The solution of the exact electro-

magnetic {(EM) equations for a 3 parameter beam (finite rise time,
pulse width, and decay time) crossing a drift chamber of finite
radius and length 'is presented.‘ The chamber is filled with a
plasma of constant conductivity and the walls are assumed perfect-
ly-conducting. Two beam current density radial profiles are

considered: a uniform current density out to the beam radius, ~
and a Gaussian profile typical of pinched beams. -The problem is : £

set up to handle any ordering of beam and chamber lengths.

The solution is obtained in terms of a single infinite sum ' [_
of radial modes; each mode containé a translationally invariant
part which gives the fields for a long tube without endplates, | (
and a finite integral which derives from the radiative fields of i

-

the surface charges accelerated by the beam fields as the beam

passes through the cavity. ‘ : L

The endplates considerably complicate the mathematics but,
of course, must be included in any theory which attempts to
compare with experimental geometries. The endplates have a major
effect on the electric fields when the fractional electrical
neutralization, fe < 1; the perfectly conducting endplates "short
out" the radial electric field near the plates, and the magnitude
and, indeéd, the direction, of the longitudinal electric field

~are changed by the existence of endplates.

¥
This material has been reported in S. Putnam, Theoretical
Electron Beam Studies, PIQR-105-4, Aug. 1969, Physics Inter-
national Cempany, (submitted to DNA).




......

3.3.2 Mathematical Development. The basic EM field

equations for azimuthal symmetry that we need are

- ' 2 2 '
13(3) 3 1 9 41roa.)
- = (2 - — + s A = 8 (3.44)
(_r'c)r EVAN R e e R o .
_ : . _4m L 0Q
S source function = = jbz TNy (3.45)
r
— _ 4T . '
0 = - fjbr dr' - f(z,t) | (3.46)
dwg , 1 9 _ SA
("E_ + 3 FE) $ = - xz+0Q (3.47)
- . 9%
E, = or
_ L] 1 3Aa
_ JA
Be = "~ 3¢
where A is the z-cdmponent of the wvector potential

¢ is the scalar potential
¢ is the conductivity (a constant).

f(z,t) is an arbitrary function which is useful for specifying
boundary conditions at r = R. This function derives from the choice

of gauge and will be taken zerxro below.




We transform variables above for mathematical convenience.

Let u.= y(vt-z) = distance in the beam frame, which we assume

moves with constant velocity v. Let

2 2
1a (.93 \_.223 2,2 3 3 _ Am
[— r 5r (r Br) Y 5 +Y 8 7t 2k u } A = c
Bul auo o
P ) Y-
_+€¢=__..........._
(Buo B aul
2w0§v _ 2k
k 27 ¢ T 53
c BTy
\
g = -39
r ar
9 A
E —'Y_L-—B_
z [agl au]?
B = -9A
9 ar

We have taken jb =0, or Q = 0, in these equations for mathematical
T _

simplicity. The radial beam current component can easily be

(3.49)

(3.50)

(3.51)

(3.52)

handled in the methods developed below, but since the main point

here is an exposition of boundary effects, we take jb = (0 in our
X

beam model.
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ey
[

]

The boundary effects (surface currents and charges) give
homogeneous contributions to A; i.e., Eguation (3.44) with S = 0,
and since they ére not translationally invariant ,we must keep
u and uy as independent variables. However, the particular, or
inhomogeneous part of the vector potential, Ap, deriving from
the beam current,is translationally symmetfic under the assumption
of constant beam velocity, and we write Equation (3.49) as

2
_ 1 3 d \ _ 9 ] p _ 4m .
[ r 3r (r 5?) 5:§_+ 2k Bu] AT =g Jbz (rpu) (3.53)

‘The vector potential, A, ¢, and § are now eXpanded in radial

modes:

o ~
E : An

A = An JO (—R r)
n=1
= Aoy :

= e 3. i

s E anO(R r) .P (3.54)
n=1 .

¢ = E *n Yo (ﬁ“ r) /
n=1

where An are the zeros of Jo’ the zero order BeSSel function. The
Equations (3.53) are appropriate for a conducting wall or Ez = 0
at r = R. Substituting Equation (3,54) into Equations (3.49),
(3.50), and (3.53),

52 3 "nz P s5)
[‘g?‘*z}‘s‘*(ﬁ")]‘“n = 5 (3.55a)
a2 2 | A L2 |
-ng———j+v282 9 = + 2k %‘E‘"’(E’E) A = o (3.55b)
Bul o ou fo} ' n

A
(g—u—-"l' €)_¢)n = '-é—.—-—rl ’ (3056)

fo} ul




where
o o h
An An + An .
Anp = Anp (u) , the particular modal component
h _h
acs = Al (uo, ul) » the homogenecus modal component

If we consider a finite perfectly conducting cylindrical cavity
(see Figure 3.2) the boundary conditions are

I (3.57)
u,=0, - yL

or, if Anp = Anp (w) = £, (u)) £,(u;), the factorability implies
that Equation (3.57) may be satisfied by taking

BAn
3111' =0 ’u =0 - vL (3-58)
' 171
This is obvious if we integrate Equation (3.56):
e—suo %o s BAn o
¢, = B f e W]Tds (3.59)

- 00

: : - e _ - !
AT]/TIIX __h ‘?
I \\Peﬁ_fectly

Beam current , conducting
profile vy, =0 u, = -yL walls
2

= L

Figure 3.2 Cavity geometry.
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The initial_values of Er’ Ez and B 'muSt also be specified

_ )
for all 0 = z< L at t = u, = 0 to define the problem. -If we
assume the beam front to be at z = 0 for t = 0, An and aAn/auO
must equal zero at t = 0 for all Uy inside the cavity if the end

plates are perfectly conducting, as we assume.

.We now proceed to determine Anp for a beam with finite rise

and decay times. We assume a beam profile

Jp = f(r)g(u) -
A
with
f(r) = CH{a-r) = C, 0<Tr<a
= 0, r > a
" and
gf{u) = 0, u=2o0 ?(3.60)
-o,u
= (l - e ) sy 0s us T
P
-0 _1
1-e 1 (; -az(A—uO
- —az(A—T ) €
l-e P
T. S us A
= 0, u= A - J




Figure 3.3 shows the function g(u). Note that the square wave

pulse limit is obtained from Equation (3.60) by letting oy > m" -
Gy > ®, 4 + 0, with az(A—Tp) remaining constant as the limit

.is taken.

Figure 3.3 The u dependence for jb Q,
z =
[
We obtain the source function for the n™! radial mode, S_, L
from - ' -
4 4 2 1 3 Apr! \l |
= 2T, = 2T _..... — 1 1y ( n ) 'l
5, % g Jbz = g{u) [Rz [J o )Jz ,/n r'f(r') T \§ drw
: n : 1 n o ,j

s
YS!

: A
2 C a n o
An) [Jl(ln)] 2 (R> 1 (R ) : 2;

F. 9 {u)

and Equation (3.55) becomes ' : tf
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-3y oo 2 +"i£ i A T F (u) (3.62)
312 ou R n n 9 . :

The guadrature for Equation (3.62) is

u
F -n.,u n.s
Anp = n e 1 f e 1 g(s) ds
2VE /
- e g(s)ds (3.63)
+co '
with Yy 2
' - 2 n
e = k% + (R
ny, = Vg -k

n, = /& +k

Although each of the constants defined in Equation (3.63) is n
dependent, we will not explicitly denote them as such. Using
g(u) from Eguation (3.60) in Equation (3.63) we obtain after
straightforward integration:

(o
Tl e s U =0
: -1,u -0, 1 na.u :
P -+ z—+T,e ' -Tje T +r,e?, osust
AP o n J" M
n .
2‘/—5— _‘ _Tl]_u leu 0ﬁ2u
' e I'g + Te t e F7 - F8 e , T.sush
\rge * L, uza (3.64)




The cons.tants defining the longitudinal beam profile are {j
. R e—m2A (az‘nz)Tp - foymny)a e—nzTP _e—nzA ' %i
Fl = Q a""’"_""rT_ e - e + - (3-65) it

2 2 : - 2 o
. B!
( -n,T ) - (ny+ag) T L
l - e P l -e
+ - —e ’ L
N2 i) 1 §
-0 T
a . l-e 1'p =
- —az(A—T ) !j
1 -e
B
al Lvn‘
Iy = (n,-o)
M1iN7% 8
L
r, = 1 L
3 n2+al niToy &4‘}
4 1 Ny n2+u -
. e—a2A+(nl+a2)Tp eanp li
1"5 = 0 o - R _
| 1 2 1 B
( ) -
n,-c¢,J)T n, T
_ (e 171" 'p _ l)- . (e 1p l) o
N ]
r, = 0 (l— + 3——-)
1 M2
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co
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|
Q
[ &
[
e
=
-
4=
Q
N
=
Iy
l—l
Q
[ 28]
\.__-/

- e

<e (nl+a2)A (nl+0t2) TP)

The above equations for Anp satisfy continuity of the functions
and their derivatives with respect tou at u=90, 1_, and A, as
required by EM field continuity.

We digress briefly to remark that we have now obtained the
vector potential for the case of a finite pulse with current profile
given by Equation (3.60) traveling through a long conducting pipe of

radius R, filled with a medium of conductivity o

| °\ AT
s Ere ()

{(long pipe) _ " n=0

with Anp(u) given by Equations (3.64) and (3.65). This result is
a generalization of the problem discussed in Section 3.2, where a

semi-infinite beam filling the pipe [ radial current variation




m Jo(llr/R)] was considered. We have directly obtained the wake

fields in the pipe from Equations (3.64) and (3.65) (u=A), and could
easily continue the calculation for a second pulse in this wake.

We return to the finite length cavity problem and determine_
the homogeneous vector potential terms to be added to Equation (3.64)
in order that the boundary conditions, Equation (3.57), be satisfied.

- The equation for-Anh is

2 A \2 . :
9 2,2 9 3 n h -
- 2 T +Yy“B + 2k ———-+—(——) A = 0
Y 3u12 R Ty 2 us TA\R nC (3.55b)
_ o}
with 3A_ aAnP aAnh : .
—1 = + = 0 ,u = 0, - yL : (3.66)
aul Bul Bql 1 |
Let us define a function Wn(u ; ul):
_ h { k
Wn , = An exp (_—ngz uo) 7 (3.67)
which satisfies
42 2
S v _solw o= o
B2 5u 2 - 2 n
: 1 [}
w. (0,u) = AT (0,u) | (3.68)
n 1 n rel - .
Wy aAnh | X h
= (0,u;) = ——— (0,u,;) + —~—= A (0,u.)
auo 1 Buo 1 32Y2 n 1
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It is coﬁveniént to take the beam head (u = 0) at uy = 0 when

u, = 0. The initial conditions are then that all fields in the

cavity be zerc before the beam enters the caV1ty, or A r OA /auO =0

- for u, = 0. We can ea51ly make A, P and 82 p/Bu =0 at u =0 by
B subtracting A P for u < 0 from Al P of Equation (3 64) . Define a new
(} A P for the cav1ty problem, A P,
_______ N
L‘/f r_ 0, u= 0
-n,u -0, n,u
1 1 1 1 2
[_‘ ﬁ———+ﬁ—+I‘2e —PBG +(I‘4I‘l)e ’
1 2
E; 0= u=xr1
F -f.,u u o,
I AP = 2 < Ipe 1y Te + (I-T;) e 2 . Iy e 2",
n 2]/2-
)
‘ TS us A
n,u
" -n,u 2
-

i . o - (3.69)
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For the moment let us not worry about the form of th when u 2 A;
n,u :
the homogeneous function will remove the divergent e 2 term.

The initial conditions for W are now

BWn
l) = '5'{1'; (0,1.11) = 0

"W _(0,u
n .

In order to solve Equations (3.68) we use the Laplace
transform technique and transform with respect to uO:
oW

__n
au
(o)

82

Bul

2, 2 2
5+t B™ (p™+Q) Wn(p,ul) B 1ip Wn(O,ul) + (O,ul)

= 0 (3.70)
. ‘ {

o

The boundary conditions therefore enter only in the homogeneous

solutions of Equation (3.70} which we write in the form

cosh B pz+Q (ul+yL) fz(p) cosh B¢p2+Q ul
Wn(p,ul) = fl(p) + (3.71)

8/p%+Q sinh 8vp%+Q yL Bvp%+Q sinh Bvp2+Q YL

where fl and f2 are functions of p chosen to satisfy

AR P 2 :
9% ~x/Ey% u W |
n_o. e o _n _ g , u = 0, =vL (3.72)

Bul_ U,




! : T
it

. o P
We obtain BAn /Bul_

from Equation (3.69):

-nqu —a,u n,u
n1F2 e . + ay P3 e +.n2 (F4 Pl) e ;
oR P F 0<sus< 71
n_ _ n .ﬁ
su = _ _
1 2/g Tt —nlu nz/u 01.211
—_ e + My (P7-T1) e - a2F8 e :
1i'5
T = us=sx A
p
-n.u n.u
1 27 .
- an9 e nzrl e u= A,
(3.73)
When u, = o,
P
A F : ~-N.u -¢-.u n,u
n n 170 170 2
{u ,0) = ~— - N0~ & + a,T, e + n,(T,-T,) e
aul o’ VE 1°2 13 24 7
« H (uo) H (Tp - uo)
i —n'ﬁ u . 1
1l o 270 270 . .
+L“ an5 e + 2 (F7 Pl)e - azra e ] H(uO Tp) . H(A-uo)
-n;u n.u _
1o 20
- nyTy e n,r; e ] H (uo-.A) } ; (3.74)
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Similarly, when u, = = YL, | gj
3K.p ' F : -7, n,yL -c,u o ?E
yL
aun (uo’ - yL) = n _ ”1P2 e 10O e 1 + alr e 170 e 1 i)
1 2/E 3
néuo -N,YL : o Lj
+ nz(T4-Pl) e e H [uofyL] H [YL+TP*UO] ‘
-nqu_ 1N,YL N,u. =nN,YL _ {
_ 170 1 270 2
+ [ nlfs e e +_n2 (T7—Fl) e e =
azuo' —azYL]
- a2F8 e e H [uo-yL-TP] H (yL+A-uO)_ lg
1.
L -N,u n,yL n,u ~Na,YL 3
170 1 270 2 “
* [' Mty © © Ty e e H (uO-YL—A)} (3.75) L
7
A ;
R
We are now in a position to determine the fl(p).and fz(p) of
Equation (3,71). Inspection of Egquations (3.74) and (3.75) }J
reveals that we need the Laplace transform (L) of the function ;@
-yu : ;
e © H(uO—G) H(W-uo). Elementary integration gives
-vu -W(v+f ) Lj
o . _ _ 1 =8 (v+p) p’ (-
L|e H(u0 8) H(Y uoq. = 5w {e - e (3.76) -
D

Equations (3.71), (3.72), (3.74), and (3.76) give:
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' ' ( _ -Tp(nl-k/62Y24p))
W 3 i Fn —'anz l-e
5—-11—(p,0) = —fl(p) = - 2 2
1 ‘ ' . - 2VE p + (nl - k/8%y7)
—T'(al—k/82Y2+p) -f (p- -k/82 2)
o.T. A1 - e P 0P ,~T )\1-e P Prnpmt B A
. 1t3 Natig™
2 2 2 2
p + (Ot1 - k/87v7) : P - (n2 + k/B7vy7)
( -1 (nl—k/62Y2+P) ~A(nl-k/82Y2+p)>'
-n. T e P . -
_ 1°5
+ 7 2
p+ (ng - k/B%y™)
| 22 : 2 2
. nz(r7-rl) (e-Tp(p—nz—k/B Y )_e-A(p—nz-k/B Y ))
p-(n,+¥/8%Y%)
2 2 2 .2
T - —a.—k -A{p-a.~k
) o,Tq _ (e T (Broyk/BYT) - =b(poay /BTy )) (3.97)
p- (e, +k/B7Y™)
- 2 2 o
_ nily -A(ny-k/BTY HR) UL -A(p-nzﬂk/ﬁzY%
5 3. © 2 2. ©
pt(n;-k/87Y") p- (ny+k/B7Y")

Similarly, using Equation (3.75),
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|
A
LH

: }
.
{3
.
:
»

, hyY e _ — “k/B > 21p) -

_ F,o o (T,e YL (n 1 /B +p) - (T p+YL)
W (p, L) = - £,(p) = - - | e .
el : 2/E (p+n~k/BY") l;

oYL . '
- (-Y.L+TP) (nl-k/8272+p)) a;Tse ! "‘YL(Otl-k/BzYZ"'P) o g s
—e . + - e EE .
p+(al-k/82Y2) .
L
. [
' 2.2 ,
_ ef(YL+Tp) (a,-k/B7y +p))
.
-n,YL -

ny(Ty-Tple 2 ~yL(p-ny=k/8%Y%) - (YL+T ) (p=ny-k/B2YE)
+ € —e .
p- (n,+k/8%Y%) i
nyTge 1 ( = (YLt ) (nl—k/62Y2+p) = (yLtA) (ﬂl-k/ﬁz‘fz"'P)) {“--4
- e -e
p+(nl"k/82Y2) ;
| (3.78) ?é
‘ -n,YL -
N (T<T)e 2 —(yL+T) (p=1,-k/8%y2) - (YL+A) (p-n,-k/B°¥) B
AN ! { e p’ v 2 —e 2 [
p-(ﬂ2+k/52Y2) [
L
-a., YL _
a,Tge > - (L) (pmoyt WB2YY) - (v (proy-k/8%Y) i
- a -e _ R
p- (a,+k/82v?) .
ny Yk 2.2 -y T " 2.2
1y Toe - (vL+8) (ny-k/B%vP4p)\ myTie 2 —(YL+d) (p-myk/B Yh}

- - e’ - 2.9 e

p+(ny-k/B2v%) p- (M, +k/B5Y%) E
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We have now completely defined Wn(p,ul). The terms of fl and f2
are bf the same form and we need to invert to (uoul) space functions

of the form

C - cosh B/p?+Q (u+b)) | -byp

- e
p+b2

: (3.79)
B p2+Q sinh B p2+Q YL

where C, bl' bz, and b3 are constants. Denoting the inverse

transform by ™1 we have,

u
L_l [(36)] = -/~ ds hl(u)hz(uo-u) (3.80)
. _ o '
c _1 | cosh BVp2+Q (ul+bl)
with hl(uo) = (—) L 1
: B 8 p2+Q sinh B/p2+Q YL
~-b.p =b..(u ~b.,)
o o.-1[ 1 3P _ 2\%o™3’ _
h2(uo) = L [5155 e ] = e _H(uO b3)
We can write hl(uo) as
'uo
' _ C 2 2 .
hl(uo)_ —. z -/c: | JO Q(uo -v) f3(v)dv
- (3.81)
o -1 cosh Bp(u;+by)
with fy(u,) = Lo [sinh Bp YL ] :
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In order to evaluate f3(uo), we write

' —Bp(YL—u =b.) ~3p(YL+u +b.) tj
cosh Bp(ul+bl) e 171 e S R |

sinh BpyL ~-28pyL _ ' ("
' 1 -e |

and obtain | ' | ' B

fa(u,) = E 6(uo—8(yL-ul-bl) - 2ByLm) -
OSmSuo/ZgyL 3

(3.82)

+ 6(3uo—s(yL+u +bl) - 2RyLm)

1

,,__,_,_.....'_

where m is an integer and & is the delta function. Returning to N

-
Equation (3.81), we have {;
B
hy(a ) = £ J Jolu 2—[8( L-u,=b,) + 2B8vL ]2] ? o
1'%’ T OB Z : oz[o YhTuym0y yhm E
OSmSuO/ZByL L
ot H[uO-B(YL-ul—bl) - ZByLm] §
- o P ;
+ JO{Q[uO '[B(YL+‘_11+b1) + 2B8yLm] ]f el
[
..H[ﬁO—B(YL+ul+bl) - 28yLHJ} (3.83) ‘?W
.
&_i
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| i

for notational convenience let us define a function G:

[

{ - ' . G(k,v,k,Y) = Gl—GZ
: —\)uo ﬁo- (\)-k/BzYzz)s
[__jl Gl(h,\),K,}qj)_ E -%—"B-—'—' f ds e ‘H(uO-S—K)
(o] .

U . H[ Y- (u -s‘)]. J o[s2-8%¢ -'2YLm)-2]\

o _ J o _ Y _
jw} ' O=<mss/2BYL
] .
H . . ﬁ[s+sul—2BYLmJ + 3, \/Q [52-82_(2YL+u1+2'YLm)2]
. *H [s—B(ZYL+ul) - 2BvyLm] " : (3.84)
i
[7 ' B e_v(uo"YL) o (V~k/82Y2)s
) Gz(k,\),I{,"P) | = z -/o. ds e | H[uo—s—(K+YL)]
§
' ' 2 .2 2
1} © HL¥+vL - (u_-s)] { E [JO \/Q (s°-8° (yL-u, +2vLm) <]
) : 0smss/2B8YL
} - 2 .2 27
* H[s-B(YL-u;) - 2ByLm] + J o[s“-8% (vL4u +2vim) 4]\
IW . H[s—B(YL+ul) - 2BYLm]] } . ' ' © (3.85)
&

We are now in a position to eiplicitly writé‘out_An = K5P+An'-

r




- ()
-

We obtain for the complete vector potential of the nth radial mode: i%

F : =n.,u ' i

a = 2 %—-» + 2 VE(q —u)H(u)+T, [e (e W) H(u)+n,G (k,n,,0,1 )] B
2/E 1 nz p B P |

—alu nzu.
- 1“3[e H(Tp-u)IH(u)MlG(k,al,O,Tp)] +(P4—Pl) [e. H(Tp~u)H(u)

. 2 - -n,u
- nzG(k,-nz,O,Tp)] + Ps[e 1 H(u-Tp)H(A~u)

+ )Gk g, 0 |+ T Humt ) H(A-w)

n,u ' o
#(rry [o? Bty HG-) - on, Gy, 0]

- Q.U
-T le H(u—Tp) H{A-u) - oy G(k,—az,Tp,A)]

- _nlu . .
9 -e H(u_A} + nl G(k;nlrﬂrm)]

_ nu | | o
- Fl[} H(u-4) - Ny G(k,—nz,A,w)] }. (3f86)

In order to verify that An satisfies the boundary and initial

conditions we note some properties of the G functions:
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1 o - - = |
E'EI = .:e H(uo k) HL Y uOJ ' 'ul 0_ .
| | (3.87)
= 0" ul = -_— 'YL
2 . .
duy A o :
_ | 3.88
o —v(uo—yL) : '( )
— er H[uo...(K+'YL):] H[T+YL-UO] ’ ul = - YL

_ 2 :
== (0,u) = =—= (0,u,) = 0
qauo 1 Buo 1
Equatidns (3.87), (3.88), and (3.89) show that An'of Equation
(3.86) does indeed satisfy the necessary conditions for fields

in a closed cavity.

Let us consider the prdperties of the solution to Eguation
(3.86) when YL >, Referring to Equations (3.84) and (3.85) we see

that m = 0 and

-vu (o] 2 2
. . o) - (v-k/B"¥")s . _
lim Glm_> € ./- ds e H(u -s-x) H[Y-(u -s)}
. JO'("/Q(52—82u12)> H(s+Bu1)_ o .(3.90)
and _ . ' '
lim G2. + 0 .
YL”*“’ -
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Equation (3.86) should reduce to Equation (3.64) when YL ®;
u e i.e., An+AnP, the translationally invariant form for no

‘end plates. To recover this form we require that

( n.u
G(kr‘nzrarw) -+ ':I"""‘ e 2 '
T}z ‘
lim .
YL+ < G(k,—nz,t ) > O (3.91)
Q
G(h,=ny, 0, ) > 0
A

and all other G functions to approach 0. Equation (3.90) gives

u

YLeo ! -—_31_11

or, letting

2 2 2
W= 5 =B ul r

2 2 2
- 1im Gl(k,—nz,A,W) = 5 ./. wJ (/YQw) » e :
YLreo - © |
%2+62u 2

1

npu -4 2 2
270 0 —(n,+k/g"v)s
lim Gl(kr“nzr_A;OO)= < 5 f e 2. e | JO (\/Q(SZ_ 21112)(3{.\9--1';

\\\\\

L.

i

w

i




O

Lo

-

Then T . - ‘
| ' , o -(n2+k/62Y2)Vw2+82u12

lim Gl (k,"‘nIZ,A’m) -+

‘YL—)-oor _ . o B | /w2+82u 2

1l e
O

= wee JO(¢QW)dw

u
na.u n2 1 I
= e2°. %— (3.92)

2

‘where we have ﬁsed the known integral _
* —av/x2+y2 -yva +b

- & : J (bx)xdx = = I— p

o o

/x2+y2 _ a2+b2

with y > 0.

Now let us look at the case of a semi—infinitekﬁanl(A,TP+W)

in the limit as yL-». We address ourselves to the question of

'whether'An of Equation (3.86) reduces to the form for a semi-

infinite beam in a long pipe with no end plates as u_>e. We want

F . Nyu
lim An S Fl e , U= 0
2/¢
YL -1.1 -g,
u_>e %I + %; + Tz e T - T3 e T , u=0

with




Fl = lim Fl L
Tp,A—)—m
T, = limrT, |=
Tp.,A—Hx)
T3 = lim P3 =
TP'A+OO
(1"4 +'0 as TP, A o)

; |
In terms of Equation (3.86) for

= T
A ey
Ny Ny =0y 2

ny+n, _
(nl—al)(n2+a1) 3

A, we require

Gk, Nqr 0, «) =+ 0
lim _
lLiZ 9 G(k, 1 0, ©) > 0
O
e 2%
Gk, “nyr 0, ©} = o
_ 2

In a similar fashion as above we can verify that

Equations (3.94) are indeed satisfied.

above discussion:

72

We summarize the -

(3.93)

(3.94)

N




oo
@

(i) If u, < ByL, then end plate at u, = = vyL can be neglected

(ii) If (i) is satisfied and

2 2 12 >> 0 (finite beam of length A/yv)

1 >>-.0 (semi~-infinite beam)

then the end plate at u; = 0 can be neglécted. These comments, of
course, are relevant to the vector potential A and are correct for
By. The electric field components involve a time integral of A
through ¢. They do not reduce to the no-endplate case when 0 = 0
unless —Bul > w,

. We complete this discussion with an observation about the
effects of a finite conductivity (k # 0). We have tacitly assumed
that

If k =0 =0, or, if for a given k the mode number is large enough
this is always so. When '

2
]§2>(§E)'Q<°"

and the above formalism carries through with the replacement of
Ig by I in Equations (3.83), (3.84), and (3.85). If Q = 0, the

G functions then become simple exponentials. We can draw an

analogy with respéct to the nature of the various Q orderings
above by relating the cavity eigenmodes to a harmonic oscillator

with viscous damping:




Q > 0 - underdamped
Q = 0 = critically damped

@ < 0 = overdamped

3.3.3 Discussion. The mathematical pfesentation above is

complicated by the rather general form of the aséﬁmed beam pro-
filé and the allowed arbitrary ordering of beam and chamber
lengths. It is a simple matter to reducé the formalism for any:
of several interesting beam transport problems. The reduction
of the G functions for a single endplate has already been dis-
cussed and is explicitly considered in Section 3.4 . Such a
case would be relevant to beam injection intc a very long pipe
for times before the beam nears the end of the tube. The pfe-
cursor signal Which travels ahead of the beam at velocity ¢ and
which could cause precursor ionization effects, can then be
gasiiy obtained. We also point out that a less general beam
profile (we have a 3 parameter profile) substanﬁially reduces

-the number of terms in each radial mode.

The number of important radial modes depends on the beam radial
prcfile. We have derived the formulas for the Heaviside radial

function Which would be applicable, for example, to problems where

)




A the beam uniformly fills the conducting pipe. Another case of
interest is a Gaussian radial profile, corresponding to experi-
mental profiles for pinched beams where R is much greater than

the effective beam radius. Then we, have

Iy = flrigu)

: °z _
i o 5 2
with f(r) ~ Ce 2 F R >> ) (3.95)
L. . R 2 2

' “h%r! A r'
7 = ﬂ 1 = 4_1T 2_ ____C 1 ( I 1
E. and Sn_ = 3 jbz - g {Rz L fr e I AR )dr _
L 1'"'n o]
AJM) = Fn g(u) ,
"& _ R e
_ | ' or, if we approximate fdr' () by fdr' () ,
. | o} : o
- (x_/2rb) .

47C e '
. : F = {3.96)
Lo n c 2.2 2
| R%b [7100)]

The formulation follows through by replacing F from Equation (3.61)
\é _ by BEquation (3.96). The radial mode convergence is now very rapid.
| ﬁor example, if Rb = 10, corresponding to approximately a ten to one
= ratio of chamber radius to beam radius, a few terms df the infinite

= radial sum, up to about A~ 20, are adequate.




' If one is interested in times before gas breakdown when ¢ is
small and current neutralization is negligible, an approximation
for the EM fields may be obtained.by taking o such that the charge
relaxation time, Tg'r calculated for a conducting medium is equal
to the electrical neutralization time calculated from secondary
ion-electron production due to collisional ionization by the beam

electrons:

9
_ 1o 0.7 :
N (nsec) = 4nc BP (Torr) ' (3.97)

where ¢ is in gauseian units (sec_l) and_the alr collision cross
section has been used [ Egquation (2.37)]. This procedure gives
the same time scale for the decay of the radial electric field in
the two cases. The algebra of the formalism is simplified if

g =%k =20, corresponding to vacuum or very low pressure beam
injection. The large;electric fields generated by typical high

6 V/cm) would restrict the

intensity beams when o = 0 {(~ 10
validity of the calculation to low v/y beams where beam distor-

"~ tion would not be severe.

The actual evaluation of the EM fields from the above

, formulas is best accomplished numerically. The fields can be
‘plotted for given beam end geometry parameters at specified r and
z as a function of time over a specified time interval. Although

the expression for A are tedious in the general case, they

L :
[




involve only two types of functions. The particular component Anp

contains only algebraic sums of exponéntials, and the homogeneous

component Anh has only sums of terms of the form

. —=a u a. s

(o] 2 2 2

e f ds e Jo \/Q(s - ay )
_ bl .

Standard'computer packages exist for the JO and J functions and

1
for the roots of these functions. In many cases of practical
interest an asymptotic evaluation of the above integral will be

entirely adequate, and this can be done analytically.

3.4 SINGLE ENDPLATE, ZERO CONDUCTIVITY PROBLEM--
THE INJECTION PROBLEM

We now reduce the formalism of the closed cavity problem
explicitly for the case of a beam entering a long conducting pipe
through a single endplate. We shall take the plasma conductivity
to be zero, which implies that the EM fields are relevant to the
initial penetration of the beam into the drift chamber pefore the
gas is appreciably ionized. The radiative fields of the ac-
celerated surface chargeé are included in the formulation; i.e.,
the precursor fields which travel ahead of the beam front at
velocity c. The problem therefore complements the cavity model
EM fields of Section 2.2 where we estimated the fields in the quasi-
static case with the beam across the entire chamber length. By
superposition of the fields calculated here with the approximately .
static fields due to ions, very good estimates of the EM fields
can be obtained for times before gas breakdown or for.t S 2(L—z)/c'

(see Figure 3.4).




- e .
0 =0 |

Electron: v |
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I
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z2 = Bot — - z=ct |
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Figure 3.4 Open~ended pipe geometry.

We assume

(1) 3, = £(x)g@) , u = yivt - z)

(ii) jb = jb ~

I
«Q
()

(iii) £(r)

-ou
-(l—e.06 ) ,u=0

(iv) g(u)

It

g , u <'0_

From Equation (3.96),

, (R >> %) (gaussian radial profile)

finite risetime

2
(325)
p o 4mc e ‘2P 1 |
n c - 2.2 ' 2
®%b [Jlun)]

(%)
IP e 2Rb

™ [Jl(knﬂ 2

i

2/5

n

2

(3.98)

f .




where I
B THETA:

P is the peak current in amperes.

- {28)

ER (-E) = i Z'5ne

o
™~
!
t=
N
]
|~
|k
avi
N
i
N
&
N
>
o
o]
—
|5~
o)
N

_ R S o ZE x
B THETA = (-By) = 7 =3 A

with Eh, Ezn,
Equations {(3.86), (3.90), and (3.93) give with o = 0

, and Kh functions of u = yvt and u; - Y2z,

g
>

We define ER, EZ}'and

(3.99)

2R LD, - T, e %% + H(uw

{3.100)

o)
Bu -u ,u <= Bul

A\ B | ~—ns
b oo (k)0 f R \/ 2
= = - ds J Q |{u_+s)“-R
I R 3] {o ,ju_>-Buj } O [ o

A r o

_ n 2
YR B

. e
8
fuo+Bul
Yo

\[ [(u ~s)
\/Q kuo~s)2 - Bzulzl ds

2u 2]
1

82u12] ds (3.101)

H(uo+8ul)




and

2
r n _ aR
1 An(ln + aR)
r 0o aRzV
2 An(hn -~ aR)
cn_ ZARR 0 = 1 (
— ’ -
3 (An aR) (An + qﬁT ‘ BZYZ
Similarly,
: . — p
‘ g2
=n _ = p h = P _ 1 n
EZ = EZn + Ezn . EZn = 7F T r and.
2 u
A o
= h _ 1 (_5) —h
Ezn = 1% \R f ds An (ul,s) .
. o

Substituting from Equations (3.57) and (3.58},

o

n

1 .
Eon Y8

+ a_TB ef H(u) ’

‘M . n ® O ' An | n
ﬁ“ Fl e H(ru) + =] T =

(3.102)

(3.103)




and

R CICE SRl |

>Bu
{ou

' A ‘

n u_+8u n :
1. A D B A R o[ty - 82u7] |as
' - B o] o! : 1 '
_ P3n uo+8ul Rt 1= : 3 >3

+ . f e _JO[\/Q[(uO—s) —Bul]]ds
o 0
2 (R 2 2 2

_____ . - E(?\_r:) f Iy _\/Q(s - Bu; ) Jds H(u_+8u,) (3.104)
{EJ ~Buy
B We verify the convergence of the last term of Equation (3.104) as
{7 u, * =. Let w? = g2 - Bzulz, then we can rewrite the term as

ST RITE

Uy —8uy w Jo (VO w) * e8u1¢6
- Iim / dw =

ure ) \/ujz AERE /2
1
B *See, for example, Lebedev, Special Functions and Their Applications,
(Prentice-Hall, 1965), p. 133.
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'Finally, we write out the expression for $n of ER:
o %
_ h
o, = %, + O,
P _ TP T
9.5 = E /B (3.105)
u h
ho_ 10 ® s TP (u..sy = L&\ Fan
B Buy n 1’ YAR buy
0 .
A /R u
—%{—I‘len , u_ + Buy <O |
(A _/R)u o
I, e n ° -(A_/R)s 3J ( Q(szﬁzulz)) .
B (u, + Bup) | - B f e ey ds .
u \VL'-,
- -(X_/R)u ' }
~(A /R) (u +Bu;) T,e ° ° o (A /R)s 33 (m
2 B 5111
~Qu N
' o} u 2 2 ,
. e—u(uo+6ul) . F3 e o) 4 o0 BJO( Q(s ~uy )) ]
3 _ B . Bul
................ Bul {-W
2R _ 2r Yo 8g, (%(Sz_szulz))ds |
- f o (3.106) /
n n —gu. 1 |
l K
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3.4.1 Numerical Evaluation of EM Fields for Injection

Problem. The equatiOnsrabove have been programmed to calculate
the EM fields and draw CALCOMP plots at specified r and z as a
function of time, or at specified r and t as a function of z.

To avoid convergence problems in the numerical integrations
involving the zero-order Bessel function, the integrals have
been taken from root to root of Jo(x) = 0. The radial sum of

the Gaussian profile has been cut off when the term falls below
1/150 of the first.term. The parameters for Figures 3.5a through
3.5k, which show EZ versus t at various distances from the end-
plate, are

™ - s5x10%a
y = 3 {1 MeV electrons)
r = 0
R = 6 cm
t = risetime = 20 nsec
- -1 -1
b = 1 (cm) ~ (beam radius)
2
o = [
YB ctr

z in centimeters is indicated on the curves.
EZ is plotted for a positive current; therefore, for an electron
beam, E, is the negative of EZ in volts/centimeter. All times

are in nanoseconds.

Figure 3.6 is calculated at z = 50 cm for the same parameters

.as Figures 3.5a through 3.5k, except that vy = 1.2 and r = 1.

Figure 3.6 1is presented to show by comparisoh with Figure 3.5k
the effect of a different y upon the influence of the endplate.
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In Figures 3.7a through 3.7c¢, we look at the EZ field on axis

as a function of z for various times after injection. The param-

eters for these figures are:

IE‘ = 1.77 x lO3 A (Corresponds to same beam L
charge/length at this lower B as for peak
: current in cases of Figures 3.5a through k.) ?g
Yy = 1.0005 (B =~ la) ' Lo
r = 0 _ B
R = 6 : : !j
t. = 0.1 nsec '

These parameters have been chosen to illustrate the modification
of the electrostatic contribution to E,6 as a result of termina- (E
tion of the negative beam charges by positive surface charges at
the endplate for small z. The B value for Figures 3.7 is such
that the time in nanoseconds is numerically equal to the z for .
the beam front. We have taken a blunt or fast risetime beam to
approximate the case where the beam risetime has been shortened Kvyé
by the large EZ fields near z = 0 in the low~pres$ure injection

problem. : ‘ !E

The fields scale linearly with peak current, so the fields ' P
. have been calculated for all peak currents. Different risetime = _x}
effects can be approximated from the curves by correcting.for

different "L g%" ;
henries/centimeter at the radius of interest, then for t. = trz,

i.e., calculate the inductance/length, L, in . i;

+ nIP (oae“mt - a.e 2 )y ' -

E ~ 2 i

z|t Ez(graph)
' 2

"The time t is to be calculated as the time after the beam front
arrival at the z value of interest, and o is the graph value ' vj"

corresponding totr = 20 nsec.
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3.4.2 Discussion of Calculations. We now discuss some of
the physics exhibited by the graphs. The effect of the endplate
is primarily electrostatic, leading to a reversal of the direction

of Ez from the case of a bean in_a long pipe without endplates,
and to an increase in E, and a drop in E_ near z = 0. By examin-
ing the magnitude of EZ near z = 0 and its dropoff with increasing
z, many of the low pressure beam propagation characteristics may

be understood.

First of all, we note from Figures 3.5a and 3.5b that 1-MeV
électrons at the peak current level would be stopped within 5 mm
in the absence of ions. Alternatively, one can deduce that at
about a 3000-A current level, the beam would shut off" because

the.Ez field would be large enough to degrade the electron kinetic

energy.

Another important point that the graphs illustrate is the Y
dependence of the endplate effect. We note that in Figure 3.6 at
50 cm, the Ez field has the shapé as would be expected without an
endplate, i.e., the field is reversed in sign and decays with
distance behind the beam front as th/tr- The vy = 3 plot at the
same distance downstream (Figure 3.5k}, shows that the field has
reversed from the z = 0 directicon, but that the curve shows an
oscillatory behavior near the beam head.* These oscillations are

even more pronounced at z = 25 cm {(Figure 3.5j).

To understand these differences, we return to Equation (3.103)
and (3.104). We rewrite EZn in terms of t and zlvariables, for

the simpler case of tr + 0.

¥
The fields are not accurately represented in the oscillatory
regions since the graphs are plotted by linear interpolation
_ between specified time points.
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A -2 _
—n 1 R—nY(Bct—Z) : : ﬁﬂ y (Bet-z) .
E = —={e H{(z - Bct) + e - H(ctp-2z)
z YB . _ _
(t ~>0)

(1)

_Y.'/ | o R R | wJ,(w dw
)\n A 2
7 Vict) 2-2z%? , ct >z w2+(_ﬂé)
0 _

, Ct < 2

(2).

o]

ﬁa (ct)*-z* -)-\—13 ct - ¥ m"@(liz) ]
+ oy f . | o~ BY | R w Jo(w_) d@
0 o o A \?
‘ w2+(§~r—1) z?

(3)

X
-ﬁ-E V{ct)?-z2
_ 9 - Cw J_{(w) dw
Y . - o - (3.104a)
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‘The (1) terms give the field without an endplate, the remaining
terms are the endplate contributions. When \/ict)_z-«zz >> R/)\n
terms (2) and (3) approach zero, and -

(An/Rr/(ct)E-z2 Ay
w Jo(w) du - =

.o 2 To- 2ve ®
: ' A
. _ ) n
\/L +(§— z)

We can now obtain criteria regarding absence of éndplate effects

by noting that the fundamental mode (n = 1) drops off most slowly
with increasing z. Negligible endplate contributions to the Ez

field require for a zero-risetime beam,

(a) Viet) -z 2 >> 2,

1

>

(no field "oscillation") (3.107)
~ 10 =2
2.4

where Ze is the beam front position at time of interest, and

- 2:4Y - - 2.4
TR (27 z

{b) e >> 2ye (no field sign reversal)

If tr ~ 0, the crossover point, Z s for the EZ field is
_ 2.4y 2.4

_ (z.~2 ) - =3z
e R f “c = 2ve R T

i

or | =z A~ (2.4 Ln 2v + Yzf)/(Y + 1), Zer2 F— (3.108)
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The criterion for absence of field-oScillation_éimply states
that the light signal from the anodé at z = 0 has tréveled

far beyond the beam front. We note that the E, sign reversal
point in Figures 3.7 is predicted very accurately by the above
criterion and we also see that

. . 2 _ 2 s _CiE A i~ R (pIEdictS
Figure 3.5k = /(Ct) Zg Y 17 =7 2.4 oscillation)
Figure 3;6 -+ %E,z 42 = %74R B (no oscillation)

These remarks have been noted on the graphs.
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3.5 BEAM IN A LONG PIPE WITH PLASMA CONDUCTIVITY VARYING WITH
DISTANCE BEHIND BEAM FRONT

As a beam penetrates a noniohized_gas at pressures sufficiently
high so that the collision frequency is large compared to the in-
verse beam risetime, and so that the avalanche charge production is
negligible, the gas may be characterized by a conductivity which
varies with distance behind the beam front. In particular, if the
beam fills the pipe radially, a good approximation is

1 (1 - e

(3.109)

with u = Y(vt - 2) (see Figure 3.8). C2 # 0 corresponds to a pre-
ionized conductivity level.

/////////////////////

N Jb (u)

—
v
SN

== o (u)

N_C

Figure 3.8 The conductivity function.
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Recall from part A of this section, Equétions (3.11) and (3.12),
that if ¢ has spatial variation, the'equations for A and ¢ do not

‘decouple. If we expand A, ¢ and jbz in radial modes as in previous

sections, the basic Equations {3.11) and (3.12) give for the nth
mode coefficienkts:
~82 -, 4moywv | 9 An 7 4moy 80.
[— nul M I T (ﬁw)' Ay T S, 3 %n (3.110)
u ¢ - -
. SA '
4ng . yv 3_ ) = R ST oy
-( c Tz 8u).¢n Yin T 9 (3.111)

Here we define'sn such that

- o . . ..
im j (r,u) = S (u) g (iﬂ r
c _bZ f n o \R o
n=1

and henceforth drop the "t subscript. Substituting from
Equation (3.109) in Equations (3.110) and (3.111), and defining
C,=C, +C |

3 1 27
3 2
_ 37 -, 4dmyv 9 _ 4dmyv ~gu 9 ( n) _
[ st =2 C3 3 5 Cqae wm i/ B2 =
Ju c C
(3.112).
dmy -gu
5 + = Cl e ¢
and
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4wC 47C
3 _ . 1l _-au YV 9 = Yo ‘ _ . 3.113
c c © * c oJu ¢ 3u_+ Q : ( )
If we let w = ou and take the Laplace £ransform of Equations
(3.112) and (3.113) with respect to u, we obtain
- o®[p? ae) - pat0) - ac0)] + ¥ ca [pae) - at0)
o c : .
' ' ' (3.114)
qmyv 1 ' /. n : _ 4T
e [- A+ @ aee)] ¢ (g ) a) = s + 4TX ot (B+D)
and
4nC ~ 4T7cC : '
2 o(p) - —L o(p+l) + LY a[po (p) - 2 (0)]
(3.115)
= vya [pA(P) - A(O)] + 0 (p)
Rewriting Equations (3.114) and (3.115), we have
Ay alp) + A, Alptl) = E(p) + Ay ¢ (p+D) (3.116)
g ¢lp) + Ag dlptl) = Ag Alp) ¥ Q(p) S (3.117)
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] A
P ‘ — _ny _ 2 2 Yv
L} o with ll e (R ); - a"p T+ 4m cz 03a P
L% 4%Iv
Ay E > Cla(p 1)
..... , c
U |
i L
. S = s + | ¢, uzp - ATYY e ol a0y
[; 2 3 . 2 C17].
= _ c® . c 1
s S | - 2% al(0)
U | | »
-~ dmy
i} Ay = fE—_Cla
B .
; 4mC
] = 34+
55 Yy F c T
i ) 4mcy
o Ay =T g
~T‘ Ag = yop
. . G(P)' = Qi(p) - voA (0) + Igﬂ.¢(0): - (3.118)
"‘} . .
i% _ _
wd
?? _ Equations (3.116) and (3.117) are two coupled equations with four
= "unknown" guantities, A(p), A{p+l), ¢ (p), ¢ (p+1). In general,
(1 they cannot be decoupled. We proceed by first expressing ¢ (p) and
Ll ¢ (p+1) in terms of A(p), A(p+l), §(p) and T(p). From Equations
- (3.116) and (3.117),
'<\ /

3-107




A A =y

$(p+l) = 1= A + 2 Ay - 2BL - (3.119) g
- 3 A3 S -

| Ay Ag

¢ (P} = g Ay

Ao Ag AL I
1 "2 75 - 5 i
=— A(p) - == A(p+l) + S(p) ——— L.
A J\3 }\4 }\4 )\3

- 9® - (3.120)
Rl .

Now replace p+l in Equation (3.119) by p and denote this . -
translation in the A's by the subscript (p-1). Then : s L

A . A = . i
p(p) = (I‘l') A(p-1) “"(1‘2') A(p) - %}ﬂ (3.121)
. 3 _'..(p-l_) : 3 (p-1) 3..._ . . o

Equatiﬁg (3.120) and (3.121) gives an equation for A alone: o

e, A(P) + e, A(p+l) + e, A(p-1) = | | ' {

1 2 3
o (3.122) [
§() + e 5(p-1) + ¢, Q(p) -

€4 5

with SR o | e
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m
(V)
: 1
e
b
W
’___\--/
g
o1 :
[

I"“—m'—nkr"
o :
-
i
-

AS_
4 M3
2 . .
’ €5 = A3
{? ' {p-1)
.
' - 1 '

| 6 T T e (3.123)
) _ :
Lj The e's are all ratiohal functions of p and §, Q aré source
~ functicons involving A (0),3A (0)/3u, ¢(0), and 3¢ (0)/du, the
Imi boundary conditions at w = 0, Equation (3.122) can now be inverte&-
. - back to w space giving an integral equation for A(w). Let us
ii : dehote the inversé'transform of &y by fi(w). Then
{} .
B - - . - |

du A(u) fl(w-u) + e A{u) fz(w“u) + e Alu) f3(w—u) (3.124)
- /o :
L w - |
S _=/ _du'[s(u) £, (w=u) + e” S(u) £o (w-u) + Q(u) fe (w-—u)] _
i
b
Ll
()
e
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or
_ N |
./.du A(u) [fl(w-u) + v f2(w~u) + e f3(w“u)}
o) _
(3.125)
w : _
= fdu {—S_(u) [fé_(w-u) + eV f5 (w—u):l + Q(u) f6 (w—-u)}

' The actual inversion of the fi's is straightforward, but tedious,

and we shall not include the algeb:a here. It turns out that.
Equation (3.125) is a Volterra integral equation and its solution

can be obtained by well-known techniques.
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SECTION 4

COLLECTIVE 10N ACCELERATION .
BY INTENSE ELECTRON BEAMS IN LINEAR GEOMETRY

Collective acceleration of ions has attracted a significant

amount of interest throughout the world in recent years. The

'_goal of this work has been to find an alternative to present day

accelerators in order to achieve ultrahigh energy protons, more
than GeV, or GeV heavy ions. The possibilities of collective field
acceleration of ions were first outlined by Veksler in 1956
(Reference 4.3). A group or collection of charges (electrons)
create accelerating fields, and the magnitude of these fields is
proportional to the number of charges. These "second generation"
accelerators would be capable of generating accelerating fields

in the range of lO5 to lO7 v/cm, or several orders of magnitude
higher than fields in conventional accelerators. Moreover, large
ion fluxes (lO13 to 1015 ions/bunch) of different ion species can
be expected from a collective accelerator. The collective field
concept currently receiving much attention in several laboratories

is the electron ring accelerator (ERA) (Reference 4.4). The

‘Dubna Laboratory has reported acceleration of nitrogen ions to

about 60 MeV by controlled expansion of a compressed and ion-

loaded ring.

A relatively small effort has been directed toward studying
collective acceleration of ions by intense relativistic electron
beams in linear geometry. This simple technique involves inject-

ing a beam into a drift chamber filled with a neutral gas at low

*
Much of the material of this section has been reported in
References 4.1 and 4.2.




pressures; the electron beam ionizes the gas and bunches and
accelerates the ions. The process was discovered by Graybill and
Uglum at Ion Physics Corporation (Reference 4.5) and verified and
further studied at Physics International Company by Rander, et al.
(References 4.6 and 4.7). To date, ions with an energy up to
8 MeV/Z, Z being the charge state of the ions, have been reported

for several ion species. (A.+l4

is the highest charge state
observed-- (Reference 4.8).) Minimum average accelerating fields
of lO5 V/cm have been experimentally demonstrated. Although
several models have been advanced to explain these results (Ref-
erences 4.1, 4.9, 4.10 and 4.11) the acceleration process is at
present essentially unconfirmed. The process is therefore prob-
ably not optimized from the viewpoints of either efficiency or
ion energy. Even so, the experimental data have already estab-
lished the utility of this mode as a highly-stripped ion source
and as an ion source for plasma heating. If the acceleration .
cutoff process can bé identified and the acceleration length
extended, the technique can be used to directly accelerate heavy

‘ions to GeV energies.

An important use of the acceleration process would perhaps
be in the area of plasma heating where more than adequate deuteron
energiés (2 to 5 MeV) have been attained. The emphasis of further
research here should be directed to increasing the ion number/beam
pulse, or the efficiency. Reported (energy) efficiencies range
from 0.25 to a few percent and, if one extrapolates present data
" to larger current (5 to 10 MA) electron beam machines presently
under development, several kilojoules of deuteron energy/beam
pulse can be anticipated. Such a deuteron pulse could be injected
intc a dense plasma focus, for example, where a lOlg'to lOZO/Cm3
density plasma passes through the focus field for 50 to 100 nsec.*

Without appealing to anomalous range shortening effécts, 2-MeV

*
See Section 2.11.
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deﬁterons_would deposit all of their energy in the small focal"

plasma volume (~ 102

cm3), effecting perhaps an order of magni-
tude increase in ion temperature.and a Conéomitant 103 ihcrease

in thermonuciear'D—T burn rate. In short, the narrow ion pulse
width (~ 10 to 20 nsec) and the large ion flux make the ions an
interesting energy source for heating high-density, high B plasmas..
Thesé plasmas would at least provide an intense 14-MeV neutron

and kilovolt X-ray source. The deuterons could also be focussed
geometrically on a thick tritiated target to directly produce a

14 MeV neutron source {~ 1012 to 1014 neutrons) .

The use of heavy ions (nitrogen, neon, argon}) of several
hundred MeV/nucleon for medical applications (cancer therapy) is
currently of great interest in the bio-medical community. One
such proposal, the BEVALAC, which is now under study at the
Lawrence Berkeley Laboratofy in Berkeley, California, would use
the Bevatron to accelerate heavy ions (Reference 4.12). Here,
as in all heavy ion accelerators, the ion source is perhaps the
limiting factor on beam intensity. A linear electron-beam ion

source, using demonstrated experimental data, could provide

: 1013 stripped nitrogen ions/electron pulse with ~ 2 MeV/nucleon

for injection into a linear accelerator stage. An important
aspect of the eXperimental charge-state distribution for both
nitrogen and argon is that the charge state peaks toward more
highly stripped states, in contrast to conventional ion sources.

The potential of the acceleration technique for higher

‘energy heavy ions (or protons) is not as clear at this point.

+6 (~ 30 MeV) and Ar (mean -

energy ~ 25 MeV) are within a factor of two or less of ERA

Although the energies achieved for N

results, the extension of heavy ion acceleration to higher
energies rests upon obtaining an understanding of the acceleration
cutoff mechanism. Several possible cutoff mechanisms have been

suggested (Reference 4.2) and present data are encouraging. We
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can also cite two features of Ehe aécelerating process which are
encouraging independently of the details of the accelerating
mechanism: (1) the data indicate that the full beam pﬁlse width is
not used for ion acceleration--ions are accelerated and the

- process cuts off rather abruptly--and (2) the electron-beam
streaming velocitj'limit on ion velocity shoulduallow GeV or

higher heavy ion energies.

Other techniques for collective ion acceleration have been
suggested by various authors, such as lon drag accéleration
using high~density electron bunches, impact acceleration of
'plasmoids,.and ion trapping in traveling magnetic mirrors. The
reader is referred to the review articles of Sessler (Refer-
ence 4.13) and Rabinovich (Reference 4.14) for a discussion of

these proposals.

We discuss the experimental results for low-pressure neutral--

gas ion acceleration, some proposed acceleration models, and
suggest a model which agrees with presently established features

of experimental data.
4,1 EXPERIMENTAL RESULTS

An electron beam is injected through a thin metallic anode
window into a right-conducting cylindrical cavity with a small
hole in the center at the downstream end (see Figure 4.1). The
beam and ions pass through the hole into a magnetic field where
the beam and ions are_separated; the ions are then diagnosed with
time-of-flight, magnetic-spectroscopy, and-nuclearuemulsion
techniques. Various neutral gases at controlled pressures (10 to

200 microns) are ionized by the beam.
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For reference, a summary of the experimental.data from the
experimental‘groups_of Graybill and Uglum at Ion Physics Corpora-
tion (IP) (Reference 4.5) and Rander at Physics International
Company (PI) (References 4.6 and 4.7) is given below. We assume
that the data refer to the same accelerating process although

there are differences in the nature of the beam front propagation:

1. The peak ion energies are proportionai'to_z, the ion
charge number, as would be the case if ions_were accelerated
by a stationary electrostatic field. The particle energy
per unit charge is proportional to 12, where I is the beam
current. = The experimental uncertainties allow a current

3/2 5/2

,dependence_from I to I .

2. The ion energy is nearly independent of filling gas

pressure over a range of a factor of 6 in pressure. The

proton pressure range for IP is from about 50 to 200 um. (“”

Graybill has recently reported a pressure dependence for L

hydrogen and deuterium (Reference 4.15).

3. The ion pulses are formed and accelerated after the

fractional electric¢al neutralization.

£ = (=) ion charge density
e T electron charge density

becomes greater than 1/y2 =1 - Bez, where vy is the'electron
energy, E/mocz. The condition for radial force neutraliza-

tion and the onset of beam pinching is £, ~ l/yz.

4. The proton energy spread (full width at half-maximum)
is < 20 percent, the limit of the spectrometer resolution.

This energy spread for PI covers two proton pulses.




{ .

5. The total number of accelerated ions per ion pulse is

12 15

in the range of 10 to 10 particles. The ion pulse

widths range from 3 nsec for protons and 5 nsec for deu-

terons, to about 10 nsec for helium and nitrogen.

[ —
H H

6. Multiple ion pulses (two) have been reported by Rander

et al. This feature can be accounted for by approximately
twice as long beam pulse width for the PI beam as compared
to the IP beam. The pulse separation is inversely propor-
tional'tb'the.filling gas pressure for Hz; The pressure
dependence of the pulse separation is shown in Figure 4.2
(Reference 4.16).

7. The first ion pulse may be moving with the beam front

(Reference_4.15) or behind the beam front (Reference 4.13).

The different behavior of the beam front propagation with

o

i ' respect to the first ion pulse is most likely due to the
higher v/y of the PI beam. The IP beams were typically

v/y~ 0.8, whereas PI beams were v/y ~2.

= The data summary above pertains to ions accelerated by

m? " intense relativistic electron beams in'neutral-gas—filled drift
_j chambers. Sessler (Reference 4.13) has pointed out the data
similarity to the ion acceleration results of Plyutto, et al.

......

(References 4.17 and 4.18), who observed ions of various species

in the few MeV range from a vacuum diode with a gap potential of
200 to 300 keV. The similar features of Plyutto's data are:
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- 1. Ions. are accelerated in the direction of electron flow,
{_ in opposition to the applied field '
L; ' . 2. Multiple bursts or pulses of ions
[. - 3. Beam pinches when ions are accelerated
(3 ' 4. Same order of magnitude of current density'~ 104 A/cm2
- - 5. Approximately the same ion energies and number of
L ions/burst
f. 4,2 SOME SUGGESTED ACCELERATION MODELS
r: o 4,2,1 Inverse Cerenkov Radiation. Wachtel and Eastlund
- (Reference 4.11) have suggested that the "inverse Cerenkov
™ radiation" acceleration mechanism first proposed by Veksler
St (Reference 4.3} may be responsible for the energetic ion produc-
tion. Veksler's formula for the average accelerating electric
i field seen by a bunch of ions of charge number N in an elec-
tron beam plasma is
B ' eNw 2 Yh ‘
..... J
2 4nnbe2
where W = —0 is the beam plasma frequency
P o (non-relativistic)
? vy, = electron longitudinal velocity
. n, = beam electron density
13 .
[
L m, = electron mass




F = a form factor of order unity for bunch dimen-
' sions which are small compared to the resonant
plasma oscillation wavelength, 2nvb/w0

D = the Debye length of the electron beam plasma.

The theory requifes that the bunch dimensions be small compared

to 2nvb/mp; and that the ion bunch perturbation of the beam be

small. Thus, for typical'beam plasma frequencies of 10ll to

1012/sec, the bunch dimensions must be in the millimeter range,
and to obtain interesting accelerating fields we would want the '

12

bunch number for protons, e.g., to be 10 or more. These

requirements are formidable indeed, as was recognized by Veksler.

Equation {(4.l1) may be derived quite simply by transforming
to the beam frame and applying the usual "dE/dx" energy-loss
formula for a test particle (the ion bunch) in a plasma (Refer-

ence 4.19) for the case where the test particle velocity is much

greater than the thermal wvelocity of the plasma particles.

We present a somewhat different approach to the problem of
determining maximum energies attainable by ions in a beam plasma
resulting from the electric fields associated with the resonant
plasma waves. Though relatively crude, the work does allow a
definition of the upper limit and avoids complications of extend-
ing a test particle calculation to the resultant ion beam, which

we have in the frame where the beam electrons are at rest.

The electrostatic instability calculations of Bludman,
Watson, and Rosenbluth (Reference 4.,20) are applicable to the
situation of practical interest here; namely, to an electron

beam traveling through a plasma containing either secondary

Q A
A

L

Lot




electrons and ions or simply ions alone. We obtain the high-

L fregquency inétability growth rates and wavelengths from the
. theory:
L - - , 1/3 | |
' Im {w) =~ 0.69 (mtwi ) {(ion plasma)
L ' 2 1/3 3 |
‘ Im (w) = 0.69 (wt w_ ) {electron-ion plasma in (4.2)
| | P collisionless limit)
[ | 2ﬂvb
{ instability ~ w (ion plasma)
(4.3)
—, 2ﬂvb . .
J = = (electron-ion plasma)
! p
= where Im (w) is the e-folding rate, and
- ' 2
: 2 4tn_e”
j w ~ _......_.E..—._
P m,-
- . . 2 41Tan ,
2 4mn, 3, 2e?
i1
w, - =
i i
i i




n, = beam particle density .
n; = ion particle density
npe = éecondary electron density

A = the Wavelength of the fastest growing instability

oscillation
mo = electron rest mass
mi = ion rest mass

Y =‘thé'rélativistic factor for beam electrons.

In the ion experiments where the beam ionizes the gas, the plasma is

first an ion plasma until'fe is approximately 1, and then the secon-
{

dary electron density builds up and the plasma effectively becomes L

an electron-ion plasma. Let us optimistically estimate the growth

time for an ion plasma.* With I = 50 kA, beam radius, a, = 1 cm,
vy = 0.7c, fe = 1, and Zi = 1, we obtain
wy o= 7.1 x 1old rad/sec
w, = 2.8 X% 109 rad/sec
Im{w) = 2.8 x lOg/sec (ion plaéma)
A = 47 cm (approximately the experimental

chamber length)

* - ’
We assume that Landau damping of the oscillations is negligible.
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If, on the other hand, we congider later times after gas breakdown,

and take npe =10 N, s

w = 4 X lOll rad/sec
pe
Inm{w) = 8.7 % lOlo/sec,
_and- ' A ® 0.3 cm

The equation of motion for an ion in the E, field associated
with the charge_aensity modulation of the instability oscillation

is
- Ze
% = -~ = == AE. cos (kz - wt), (4.4)
m. z
dt i
AEZ is the amplitude,

and the kinetic energy (non—relativistically) is

K.E. = xm ()7 (4.5)

If we take z = z = 0 at t = 0, the solution of Equation (4.4)

for z gives

m, _ AE _k
K.E. = —ii_ [w - \/mz + 2iek AE, sin (kz wt)] . w2 > 27e mz
2k™ i . i
' (4.6)
5 ZeAEZk
If w™ < 2 — the ion is trapped in the wave, and
i




: wom, : ‘
. _ =1/ i
{k=z wt) < sin ( 75335;5) _ (4.7) L
2
: m, o m, 5
and the maximum K.E. = 5 A2 5 vb , which is outside the non-
2k

relativistic approximation. We now estimate an upper limit for

AEZ. Assuming the electron beam kinetic energy to be 1 MeV

e, ~ 10°/(0/4)

~ 8,5 % lO4 V/cm for ion plasma : -
A 1,0 x 107 V/cm for electron-ion plasma
, 2Z2elAE_k .
Now —Z = L (4.8) x 1019 for protons
m, 2 ;
i A
_ _(Fw'
ey
o = L7 x 1022 -
A

Thus, in neither case are the protons trapped, as, of course, one
would expect since the fields are not high enough to accelerate the
protons to B = 0.7 in a wavelength. Returning to Equation (4.6), we

can obtain the maximum kinetic energy of the ions

5 )
~ m, 2. 2ek AE ' : -
K.E.max = —-1—'—2— W - \/LUZ ‘-'—m"-:-—-‘“‘?'- . E E
2k i - : L

. ?

K.E. N -6 , 2 |

5 = 1.1 x 10 BL

m.c -

i
P

=~ 5 x 1077 |

For protons the maximum kinetic energy is about 500 V--very small _N¢§

indeed. .
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We therefore rule out the electrostatic instability fields
as the mechanism responsible for the observed 5-MeV proton
energies. In any case, an experimental check could be made by
injecting the electron beam into a pre-ionized plasma; a condi-
tion which would not give rise to ion acceleration in the other
models. Then the plasma would exist over the entire beam pulse.
Also, one would'eXpect a relatively broad ion energy spectruﬁ from

a drift chamber comparable in length to the beam pulse length.

4.2.2 Accelerated Space Charge Potential Well Models.

Rostoker (Reference 4.9) has proposed that ions are accelerateéed
by the moving space-charge potential well associated with the
beam front as it moves across the drift chamber, ionizing the
neutral gas behind it. Uglum, McNeil, and Graybill (Refer-
ence 4.10) have independently suggested essentially the same
mechanism with somewhat different assumptions about the beam
configuration at the start of the acceleration process and the
mechanism of well acceleration. Both theories consider only

longitudinal electric fields and one-dimensional beam motion.

In our discussion of low pressure beam propagation
(Section 2.10.1) we derived an approximate expression for the

distance from the anode, EC, which an unneutralized beam could

propagate:
— 3.4 x 104 [t V1+VP Akl |
zc (cm) D S o 5 (4.8)
Ib {amps) v 1+ 2v
. R/2.4 1 % <2 (r/2.4)
. 1/2 + £n R/a c '




where tr = the current rise time
t& = the electron kinetic energy rise.time
IE = the peak beam current
VP = +the peak electron kinetic energy-in MeV
a = Dbeam radius

b
If

chamber_radius

The voltage and current rises were assumed linear in deriving
Equation (4.8), and the electrostatic potential (retarding beam

electrons) at Ee'is equal to the beam kinetic energy. 1If
Ii = 30 ka, tr/tv = 2, VP =1 MeV, R= 6 cm, and a = 1 ¢m,

Z 1.2 cm. Beam electrons are thus reflected back to the

C
anode by the virtual cathode at EE’ and the beam envelope

~ "blows up" radially.

As the beam "hovers" near the conducting plate, the back-
ground gas is icnized by collisions and electron avalanche over
a time scale " The ions short out the electrostatic field and
the beam moves forward. If no iong are created in front of the
beam by electrons that have spilled out of the potential well
{typically a few kiloamperes) or by radiative ionization, the
velocity of the front, B?S c = vp, is approximately EE/TN and
would remain constant, barring substantial changes in the beam
energy. The kinetic energy of ions trapped in the advancing
front can be estimated from

' - 2
m, oM, 4z
K.E. =~ v 2 4 .._E_(_E:_)

27 p 2 Ty (4.9)

and if Eé =~ 1 cm, Ty ™ 10 nsec, protons would achieve the rather

uninteresting energy of 50 keV. The maximum energy that protons
could attain by a sudden acceleration to a constant beam front

velocity would be 1 MeV, corresponding to Ty ~ 2 nsec.

A
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We therefore realize that to attain ion energies in excess

of the beam energy, ions must be trapped in an accelerating

_potential well, or, in other words, TN must decrease in time.

Moreover, to obtain ion energies which depend only on the Z of

the ions, the acceleration must be "jJust right."” Let us inquire
how T, must change with time. If
Vp ~ ZC/TN(t) {4.10)
then _
dv . z at dt
T - vy —1- :rl" dtN = v (' = dtN) (4.11)
P N N % P ™

Ions will spill out of the well if

v v e, | (4.12)

P, pc ooomy

v

where E_ is the electrostatic field at the ionization front =
106 V/cm in our example, since the electric field will no longer
be strong enough to accelerate ions at the same rate as the beam

front. Substituting Equations (4.11) and (4.12) in Equation (4.9},

m m, 2
max i 2 i,z 2 1
K.E. = = {(v_.) = = (Vv_)
2 pc 2 pcC 1 dTN
T dt
N t=t
c
where tc is the time of spillout. Thus
2 2
kg% = L_g?c? | —2—— - (4.13)
™ © 1 N
T dt
N t=t
C




The bracketed term in Equation (4.13) must therefore be « m, /%
to have enerqgy dépendence only on the Z of the ion. Another way
of expressing this requirement is ' '

o I%l-_ =4 (V ) (4.14)

and a way of satisfying Equation (4.14) is to take Gp o« vp2 which

requires
_ 1 . e : :
Vo T BTAE ° T (6 - (4.15)

where A and B are constants. Then

' o - o 4,16
Ty B At ( )

a not unreasonable form, which is precisely the one proposed by
Rostoker. In fact he argues that

*

2

A = + b _. {4.17)
Pp
n-*
B = 1T + 1 (l + b )
e I n
b
- where nb* is the ion density ahead of the beam front
n, is the beam density
Te is the time reqguired for the electrons to escape
from the pre-ionized (neutral) region as the beam
. front advances, [this time is negligible compared to
and STy 18 Ty at t = 0.
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Using Equation (4.17), Rostoker obtains,

max nb '
K.E. = (——*—) MeV
n
b
n (4.18)
t ] .._.1.3_ T
C nb* I.
and takes nb/nb* = 5 to obtain agreement with the observed

proton energies. However, the assumed ratic of nb/nb* gives

tc = 50 nsec, which is not in agreement with the data when one

uses the acceleration length of 9 cm which follows from the

theory.'r

If we assume a smaller ratio nb/nb* to be more in

line with the timing data, we, of course, lower the energy.
Estimating nb/nb*,'which is the only parameter entering into
the kinetic energy formula, is very difficult a priori. To
illustrate the point, one could perhaps argue equally well that
nb*/nb = 0, since radiative ionization is much too. slow, even
with radiation intensities comparable to those generated when
the beam is stopped in the anode. Moreover, as electrons in the
region of the well are decelerated and the charge density in-
creases, the beam "blows up" radially over distances comparable
to the beam radius. This radial blowup would imply that the
front is very sharp and that a significant number of electrons do

not precede the front to pre-ionize and decrease Ty

Ion acceleration in Rostoker's model cuts off because the
well acceleration reaches a value such that the electric field
is no longer high enough to trap the ions (Equation-4.12). We
thus would expect to see a continuocusly accelerated beam front
up to a’vélocity determined by the electron beam energy_(and
transverse enerqy). Moreover, the ion bunch should be very
narrow (< 1 cm), although space-charge effects after ion separa-
tion from the electron beam could widen the ion bunch, as sug-

gested by Rostoker.

+See References 4.5 and 4.10.
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'breakdown time t

. Uglum, McNeill and Graybill (UMG) alsc consider an
accelerated-charge potential well, but they assume that the
process starts when feml/yz, the condition for radial force
neutralization, in accordance with the data, and calculate the
electrostatic field for a uniform charge density beam in a right
cylindrical cavity. With R= 10 cm, I = 5 x 104-A, a = 1, they
cbtain EZ ~ 2.5 x 105 V/cm for O.S z < z, =5 cm (see Figure 4.3).
However, the potential well depth is then of the order of the
beam kinetic energy and the beam would be stopped and be bldwn'
up radially. Nevertheless, if the field is assumed to be approx-
imately the same as for z < z_, the well will move with increasing
background ionization, as discussed in the Rostoker model. UMG
suggest well acceleration due to gas breakdown and obtain a
' B from extrapolation of the data of Felsenthal
and Proud (Reference 4.21). In the opinion of the author, how-

ever, they do not argue well acceleration, but a constant

velocity well moving with wvelocity *’E;/tB. One could perhaps

argue an acceleration by invoking preionization by the beam
ahead of the breakdown front to decrease the effective breakdown
time. Also, since the well shorts out over the electrical

neutralization time, it would seem that their well velocity is

too slow (EN < tB).

In summary, the accelerated-electrostatic space-charge

- potential-well models can account for the observed ion energies,

It is not clear at this time if a more careful and detailed

.coupled longitudinal-field and beam-motion calculation in the
'spirit of these models could explain such features of the data

such as the current dependence of the ion energy and multiple
pulses. We proceed to a different model that offers detailed

agreement with experimental data.
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L = chamber length

zZ = distance from endplate over which the
potential reaches its maximum value

a = beam radius

‘R = radius of outer conducting walls

The beam profile at the start of ion
acceleration in the UMG model.
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4.3 THE LOCALIZED‘_PINCH MODEL

Recently this author has proposed a different ion-accelera~
tion model, the localized pinch model (LPM) (Referendes 4,1 and
4.2).. This model features a self-synchronized mechanism to keep
the acéelerating fields in place with the accelerated ions.
Moreover, it is not necessary to invoke pre-ionization in front
of the effective beam front, i.e., the acceleration can occur
_behind or with the beam froht, or more precisely, slightly behind
the beam front. The following aspects of the acceleration

process will be addressed in the LPM:

1. The accelerating mechanism-generation of accelerating

fields, synchronization, and bunch stability
2. Ion bunch formation
3. Acceleration cutoff

4.3.1 The Acceleration Mechanism. We first consider an

idealized situation to illustrate the physics of the mechanism.
Consider Figure 4.4 where we have a beam traveling in a long
conducting tube (no endplate effects) with constant radius and
charge density. Within the beam envelope we postulate a uniform

(o}

background ion density such that fe = fe < 1, except within

region 1 where we imagine that a slug of ions have been injected

at t = 0, giving a higher ion charge/length, A= Xio + A,

2
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S Figure 4.4 The localized pinch acceleration model.
|~ |
- B;, = longitudinal g of primary electrons
- - e upstream from the ion slug
i BL = longitudinal g of ions
i .
Lﬁ | _ A = length of moving ion slug
] ) _
{5 : Ip = primary electron current
(E r a, = radius of beam entering the region (1)
{“ a; = radius of ion slug
B, = theta component of magnetic field

LE' _ ' | - E_ = radial electric field
Mo o Ajo = Dbackground ion charge/length
!
Lf“} Br; = increment in ion charge/length in region (1)
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Upstream from the ion "slug" in region 1, the electron beam
radius, ar is determined by the electron and ion emittances. 1In

Section 2.7.1, Equation (2.79), we'obtained expressions for a

and feo from the Kapchinskij-Vladimirskij (Reference 4.22) egqua-
tion: |
a2 I 1 (C ym_ + C, m,/Z),(v/y < 1)
o 2V 2 e o) i i ! Y
(4.19)
£ O 1 . (;__1 A
e 2 2 C., m,/2 + C_ vym
YL _ Yy, i i e o}
where
_ 2 22
Ce = se BL c
e
_ 2
Ci- =185 B 2.2
i
%2 = ion charge state
m, = ion mass
i
Ej = +the electron and ion emittances

In region 1 where Ai > Aio’ the beam radius will not be
equal to the ion radius. Therefore, we really cannot apply the
K&V equation since the radial force for beam and/or ion particles
is no longer linear in displacement from the axis. Nevertheless
we shall use the K&V equations ih order to obtain an estimate of
~new equilibrium radii. Straightforward algebraic manipulation

of the K&V equations for electrons and ions gives




o
| 2 . 2 (1-£.7) Ao + g0 2 1
1{ (ae ) ) 2 A HAA e 2 1
i 1 YL i g, 21w —
. 'L
H A
] S
i o
- + 1 _1-fe' “Ae + g0 _ 1 2
. > {1 - 1 2 \ X FEx, e 2
5 ( 3 YL, YL,
4 YL_ S

T Y1,

[? | | | ' 5 TE . S

U ' _ 1 0 _ 1 _f © “e S o

| t4 ( 2) (?e 2) (1=£.7) sy 3 (4.20)
. . . SRS ol ¥ B o

where ael'is the electron beam equilibrium radius in region (L),
Ll assuming A is large enough for achievement of equilibrium,

Similarly, the ion radius in region (1), ail, is given by

. 2 o fA; + AN, |
e T, . . 2 2 O l i l 2
) (a. )° = (1-£ °) + (a_ )
JJL/- . _ all aO  e ( ‘Ae ) ey (4.21)

-t Let us now assume Co = (0, then f ~ (l/YLZ) from Equation (4.19).
{j Equations (4.20) and (4 21l) give '

=
J _ _ Y

Ij a !)\ I 2

[j : €1 YL \ Mot 8%y : ’

N a3 ~ %
; 1

[? If Aio+ AAi = Ae,“aei.% (a /YL), or, in other words an increase in

{

the ion charge/length to give equal charges/length for ions and
o electrons in region (1) reduces the beam radius by a factor (l/yL),
(}' with the result that

L
1
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1. xio + AAi ey N

Ike[ il

Let us now coﬁsider the beam envelope motion dynamically.
When the beam electrons stream into region (1), the higher ion
charge/length shorts out the radial electric field, causing the
beam radius.tO-collapse. The radial motion generates an Ez"
field, the magnitude of which we now estimate. We .assume below that
Xe is constant,nAXi.constant within region (l), ai~z ao = constant,
and (BBLe/az) = 0 in region (1). The E, field along the axis

generated by the beam radial collapse, E, ,_is

L. A 3a 22 3a :
B & 2 e Bte + — Bze (4.23)
e .

a

in the quasi-static, paraxial approximation.

Transforming Equation (4.23) to the ion_rest frame gives (non-
relativistically),

28_ B :
L L. Jda 2% da
1 _ e i e ‘e e >
E, - a Ae . ag au, ¢ Y 0
wlth.u. =z - BL ct., If BL. or BL << 1,
i i e
: ~ e °° > _ _
E, i m, r 4y =0 (4.24)

[N
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_ i ,
~ We use the K&V equation (Equation 2.73) to estimate
a;e/aui in region (l), aSnglng that a; = a,

2 2 .
9 2 - 0 ag 2v 1-f -8 21, Ce
2 = 2 = 2 e L a 2 2 3
0z au ¥B L e e 8 a
L - a
e e _
(4.25)
or
2 2 2
9 8e _ 2V £ o [ %e as All _ 4 1 + Ce 1
2 - - 3 |fe \a_ ) Tl N 7 a” 32 3
ouy Yy © o/ gl vt Te By Tet oag
e _ e
' : ' A s a . C
o -2y ifeo 775 e_ _ 1 + e , (22 1)
B 2 e - |)\ [ a 2 2 a B 2 C'2 a 3 Y
S Le a o YL e R P e (4.26)

A first integral of Equation (4.26) can be obtained analytically:

sa _ : 2K, ~ a K
(=2) - Kl__a_2 - ae2 + _EE £n 2 - 3 _£§ - _ij (4.27)
us © . 1 o  T1l\a a
e ‘o
— 2v o] All 1
K = _ £ + —
1l 8 2 e IAI a2
¥ Le e [e)




S _ 2v
Ky = 5. 2.2
L, 'L
K, = Ce
3 T 2 2
L C
e

Equation (4,27) can be written in dimensionless form by defining

s = (ae/ao),'x = u; /K_:.

i 1
ds\? 2 2 1 '
(ﬁ) = 1-s®+pins -Q,(-E.- 1), - (4.28)
: s
with P = 1

defined by

' The dimensionless turning radius for the beam envelope, Sgr

(ds) = 0, can be estimated from Equation (4.28):

dx
=Sy |
St ~ ‘/6 r ‘/6 >> e-l/ZP r P <1
o (4.29)
e e"'l/2P , \/6 << e-l/2P
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‘u .| . » . 3 -~ 2 "'.
) Let us now determine a, from Equation (4.29) with Q = 0, vy, = = 3,
i | | | o t

- S WU S U |

- A1 e ¥ 2 !
U - o o 2

e "{L o A?\l

! a = s, a = a e— fe T Ihél)
Lz ey t 7o o)

: _

o
B . 2o

) 100
L% ‘which is a small radius indeed!
{? _ Equation (4.28) allows us to obtain an estimate of the turning
- length, x,, by taking a, = 0, P~Q =0,

o ©t
i}
L Tk w a1
LT . Tt N 5 2

' Jo -]/l—w

i? S _ . _ |

- o -3

a_w. AN, , ' '
2 w, ~ T L - © LA S A C (4.30)
s 1 2 X _ 2 8 2 e I}‘ I g
P 1 ' TPy, e '

-, e ’
[j. A gualitative sketch of a, (u;) is shown in Figure 4.5.
-
L
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|
L
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Figure 4.5 = Sketch of the beam envelope in region 1,

Let us now examine the implications of the assumption in
‘Equation (4.26) that the ion radius = a_ = constant. Denoting

fg © 4 Ali EE S T I ' 5
RPN AT RS L
e YL .

.

freraany

by F, we see from Equation (4.25) that larger positive F values
_correspond to larger inward radial acceleratlon of the beam envelope.

If

llo+ AX o1, Z Ymo/mi - 1 : !f
: o _ 2 1 +(2ym _/m.) 2 ‘
llel L : o1 Y,

- _ [
L
)
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the initial inward radial acceleration for the beam envelope will
be greater than that of the ion envelope, so we really need only
inquire about the effects of changing ion radius with a; = a -
When ' |

a, = a_ = const., F
i %o

i
™
(]
0
+
> |
) >
=
e
[+}} js1]
O.M(D_ :
-
g
o
[4))

so we see that our calculation gives an estimate of the minimum
radial velocity and Ez field. The maximum radial velocity occurs

for'ai = ag. in which case the dimensionless radial velocity is

. a u : AX.
; - _O - i 2v o] i 1
where p = T+ v =T .‘/ 5 (;e + > ) > (4.31)

I?\el. 0
J 0 1
£ -
(e Yy, ) | ,
o Bx, /
£9 + = _ : ‘
‘.e |;L | ; : o . .
. e : ' .

The turning radius and length do not appreciably differ from the

- case ai = ao constant.




The Ez field of Equation (4.24) may now be written as

or

: b
~ - 1.4 x 10° (%) wIF V7y

where we have used

and

/R L
s

ds
dx
>
()&
lkel \s/ dx
Ali 1 ds
|A I' 5 dx

lds _ T
s dx 2
X s

An approximate average field, Ez’ can be

P
l+—7£ns
s

2_0 /1 _
) ( 5 l)

obtained by taking

1ds . _ 11 . _1
s dx 2 Xy T
giving
Y e A, V2
E =~ 4.4 x 10° (¥ V1 + v/y £F° 4 1 (V/cm)
z _ a,B e x|
e
for ' 0 < u, 3 u,
_ i 0 i,

- (4.32)
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Typical experimental parameters of I = 5 x 10% amperes, a, =1 cm,

i 1

and

give ﬁ% =9 x 10° V/cm, in which case the electrons would essentially
lose all their kinetic energy over a distance equal to the beam
radius. Our approximation that BQL /Bui =0, 0 < pi Séuit,
is, of course, viOlated._ This example_leads us to ‘the concept of

a strong inductence—dominated pinch collapse. Generally speaking
if v/vy << 1, and the beam enters a region of higher charge neutral-

ization, the pinch rate is slow and u; o >> ao, whereas if v/y = 1,
' t
the pinch is strong-inductance-dominated, i.e. the magnetically

driven beam collapse is so fast that the "I dL/dt" EZ field
degrades the electron kinetic energy over distances of the order _
of the beam radius. The current drops, retarding.further pinching.
This condition.is a "saturation” condition in the sense that further
increases in the charge neutralization or the effective v/y do not
appreciably increase E, Moreover, the strong—inductance'domihated
pinch is the state where essentlally all of the magnetlc energy of

a beam in a pipe (1/2 LI ) could be extracted by a localized charge
density 1nhomogene1ty. The saturated_EZ field value is

E

sat _ 60 I (amps) (V/cm) (4.34)

z ‘ a
Q

obtained by taklng da /Bt c. For I =5 x 104 amperes,

Eiat = 3 x lO V/cm

L is the inductance/length. This analogy to linear pinch phenome-
nology is somewhat ambiguous. The E, pinching field in the ion
frame is electrostatic, whereas to a stationary observer in the lab
frame, the field appears as an I dL/dt field when the ion bunch
passes the observer.
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, T : : ‘ oA ..
A contribution to Ez from electron bunching (m 332)
1
therefore arises in the saturation case and this field is re-.

guired for the mechanism to "work." Roughly speaking, the
pinching field gives synchronization and the concomitant electron
bunching contributes to longitudinal phase stability. In the
saturated casé,'of course, these components canhot be treated
independently. The electron bunching field, which we call Ezz,
is. of the same ordér of magnitude as Ezl, the pinching fieldf
In fact, in the saturation case where the electron streaming

velocity is significantly reduced, one might guess that Ez2

1 énd_EZ2 have the

same limit, given by Equation (4.34), but the pinching limit is

actually exceeds EZl around u; = 0.. Both Ez

adtually'necessarily lower inasmuch as a completely radial
velocity would cause Be'to vanish, and Be, of course, "drives"
the pinch. T_hat'E_:Z2 is a maximum around u;, ®0 may be argued

by analogy with Langmuir-Childs dicode theory (Section 2.1). The
position uy ~ 0 corresponds to the anpde and Ui, to the cathode.
-The pinching of the beam envelope is analogous to diodes where
the current exceeds the critical current.* {(The fact that ions
are accelerated in the same direction as the electron flow in
our model points to the essential distinction between inertially
driven and externally applied fields.) '
E;.on

A further contribution to E comes from the variation

Zf
in ion charge/length in region 1. If Ei is the rise length of

the Axi, and AAi'is the peak value,

BAAi _ Aki
~ and
Bui £i
ion Ali 1
_‘EZ 2 - 2 "-':Q'"I (5 + £n R/ao)

* ) oo . . . . R

. The experimental observations on beam pinching in diodes with
gap spacings of the order of Ui, 21 cm gives us some confidence
in our approximate analysis.
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In order to use the beam envelope collapse analysis above, we
L) must have Ri_ﬁ ao; otherwise -the envelope collapse is adiabatic.
To be more precise, the adiabatiC'limit pertains to envelope

[%' changes over a length scale > ) the betatron wavelength.

B
Equation (4.30) shows that the turning length is ~ AB ~.a, when

{g v/y ~ 1 and

. is of order unity, as it is with the experimental parameters.
[j' ‘Although the beam envelope équation we used:above did not include
a variation in Aki_with U, the analysis should be guite good if

™.
[: Qi 5 ai i.e., in the non~adiabatic limit.

f} ' ' The total E, field about the ion bunch, Ez; is
. B = £l 4+ g2+ gion
{ ) z z - Tz z
I
2}, oa : A AX, '
— ~ e ~ e _ { e i
[5 a_ ou. 2 (172 + In R/a,) (au. T ) (4.35)
1N e 1 1 1 :
. A sketch of the contributions to EZT is shown in_Eigﬁre 4.6,
Lj ' reflecting the remarks above regarding Ezl and Ezz. Ez(l) rises
from zero at u;, = 0 because of electron inertia and keeps the

[5 electron bunching leading the tail end of the ion bunch {(u

2

(} added together maintain a relatively uniform EZT, the one peaking

3 0).

prevents loss of ions around u, = 0.. These two components

where the other vanishes. This discussion requires further

T quantitative support, of course, but hopefully. at Ieast makes the .
Ié - synchronous mechanism plausible. Part of our motivation for
invoking a two-dimensional beam motion in the first place is now

Lj perhaps apparent. A one-dimensional model such as Rostoker's
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ion

Figure 4.6 Longltudlnal electric flelds of the synchronous'
ion density enhancement. S
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which utilizes electron bunching near the beam front (an E 2
field) has the desired longitudinal phase stablllty. However,'
multiple pulse data, where the beam is deflnltely extended in
front of the second pulse, requires some other way to maintain
electron bunching. (It is also difficult to see how a one—
dimensional ES well can impart significant net ehergy to ions
of a second pulse. The electrons would gain energy‘as they
approached the bunch and lose energy when they passed it.)}

Radial stability of the pulse at least requires that the
outward v x B force on the ions not be greater than the inward
space charge electric field: '

b < [l“(f:“%)]% - (oem)]

v
+ —
i Le ' E;e .
(4.36)
If \)/Y' ~ 1, Be ~ 1,
Ali — 1 £ O ~ 1
I I 2 r I
le Yy, < YL

we have radial stability for B, < 1.

_ - i

More quantitive statements regarding the stability are
outside the analysis above. A linear stability 1nvest1gat10n
currently underway should give more 1n51ght into the important

questions of pulse stability, growth times, and pulse lifetime.




4;3_2 Ion BuhchingL Let us now address the question of the

initial formation of a non-adiabatic beam collapse condition. An
obvious way to do so would be, of course, to inject a'pulse with
rise length of the order of the beam radius. We can argue bunch-
ing in the experimental-situatioh in several Wayé,_ Basically we
require an electric field gradient or a localized electric field
large enough to accelerate ions ouﬁ of a region faster than
collisional ionization can restore an.approximately uniform ion
density. The electric fields can arise from electron space charge

bunching-and/or:beam pinching. We consider below space charge.

field bunching and defer pinching effects to an instability analysis.

:y bunchihg arises even in an open—ended'potential well
(Figure 4.7) simply because ions are formed at various distances
within the well by cbllisional ionization. To illustrate this
point, we gstimaté the ion charge density in an open-ended well
assuming uniform ion production over the well and well velocity
.v < B c where BLlc is the velocity corresponding to an ion
accelerated over the full width of the well. Within a width

dzo, z, < Zo = Zy the collisional ion density, Api ; is

1 on
1 I}kel dzo:
Ap', =1 5
ion™ ™
o

and the density of ions created within the well as a function

of 2z is
pA
: : m, \ |A_]
p1on (Z). = '222 e2 %_.__ f dzo :
| ve Ta N N _VIV(z)—V(zo)l
(4.37)
< <
zy P Z,

P
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‘Figure 4.7 Bunching in a slowly moving open-ended
potential well :




If v(z) = Ez (z—zl), EZ assumed constant, we obtain

el

2 : '
_——5 ¥— 2=z, , z; <z <z, (4-33?

[
2
N[ B
lp-o

. The total ion density within the well is obtained by adding the
contribution of the upstream ion flux incident upon the well,

p?. This contribution varies as (z, - z)_!‘5 by similar arguments.
In the actual experimental situation, this relatively weak bunch-
ing effect is augmented by the partially closed nature of the
well. Because of-radial electron loss, the well near the beam
front is more like that shown in Figure 4.8. (Recall also from
" Section 2.10.1 that even without beam loss, thehEZ.field reverses
direction behind the front in a finite cavity.) We derive a

simple criterion for bunching in this case, assuming AV/V < 1,

If jiop 1S the z component of the ion current due to the
space charge field and &pioh/at is due to collisional ionization,
bunching will occur when

'Bjion 3P, _
-5 ¥ T : (4.39)

Rewriting this inequality,

o)

Aol Eo B Y |

el fo Br o o Dol @t Dol 1

oz _Waz ﬁaz dt ﬂaz T

c . N
or
. o
fe BLic 1 . s
—2i > L Lo (4.40)
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Figure 4,8 Bunching near the anode with a partially
- . closed well




with Bgic, the'velocity'an ion obtains after acceleration over
the full width of the well. If we use the space-charge limited

value for Eé,
1
= ~ vV (MeV)
z, (cm) 85 a T (amps)

.and with

| | Z 0E
BE c (cm/sec) = 1.4 x 103, -;B vV (MeV)f
i ' ’ i :

Equation (4.40) becomes

T

m, . ' .
g (nsec) > 7 }-—(—l—-—) 1 - (4.41)

Iy, Zmp 2

The beam current density jb is in kA/cmz, mp is the proton mass,

and fe 2 l/y2 was assumed.

Let us compare this formula with the Graybill-Uglum data on

the high pressure cutoff for proton acceleration. If we assume

that the experimental beam radius was approximately the cathode

. *
radius, their maximum jb ~ 8 kA/cmz, Equation (4.41) gives

Ty > 3.2 nsec. 1In order to obtain direct agreement with the

experimental data, the inequality has to be'replaced by a factor
of ~ 10, In view of the approximations in our discussion, as

well as uncertainties in estimating - it is not worthwhile in

Nf
pursuing a data fit further.

® : . ' :
This assumption is strictly valid only until I ~ 8500 yy“-1
(rc/d), or until about 15 ka.




S

We have given a physicai argument. showing that the longi-
tudinal space charge field is adequate to bunch ions, so when
the beam front passes the beginning of the "pinch-active" region,
z X R/2.4, the radial electrlc fleld is no longer shorted out by
the endplate and, if f. > l/y ; the preformed bunch may begin

‘synchronous adCeleration according to the LPM. Growth of the

bunch ion density will occur until vp > BL c, at which velocity

background ions can no longer be picked up by the coherently
accelerated bunch.

. The LPM model 'is itself suggestive of an instability growth
of bunches; i.e., the beam appears unstable to ion density in-

- homogeneities when l/Y2 < fe < 1. The instability would be two-

dimensional EM in contrast to the well-known ES'longitudinal
streaming instabilities. Moreover, such an instability would not
appear to be stabilized by longitudinal beam velocity -spreads |
since the pinching force is magnetically (or current) driven.

We defer a detailed treatment of instability bunch growth for

* later publication.

4,3,3 Acceleration Cutoff Mechanisms. Experimental
evidence-indicaﬁes that the acceleration process rather abruptly
termlnates at a length L ace (Figure 4.9). The PI data show
Lacc ~ 7 cm and the IP data suggest L ace 2 20_t0 30 cm. We now
consider possible cutoff mechanisms and suggest some relatively

simple experiments to check these speculations.
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Figure 4.9 Beam-front velocity as a function of distance
from the anode for a beam penetrating a neutral
gas.
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The ion ve1001ty is certalnly limited by the electrOn
streaming velocity, and within the context of the LPM, there -
exists a more restrictive kinematical limitation for the ac-
celeration mechanism since the electron envelope requires time

to contract. This limit would roughly‘correspond to ion

velocities of B //f In view of the constancy of the observed

-ion energy/charge state for protons as well as nltrogen and argon,

this acceleration limitation appears unlikely.

Perhaps the most obvious reason is that the accelerating

‘fields somehow lose synchronization with the ion bunch and

accelerate "fresh" background ions, (This would be the case if
the potential well reached an acceleration value such that field

becomes too low to trap the ions, a cutoff mechanlsm proposed by

N. Rostoker.) The process could terminate acceleration for the
IP beam where the beam front precedes the ion bunch, or for the

second ion pulse with PI data. 1In any case, the mechanism is not

. relevant to the_first PI proton bunch since the beam front stays

with the jions.’

If a Well,doos accelerate and leaves the coherently ac—.
celerated bunch behind, one would expect to observe at appropri-
ate pressures a distribution of ions with energies in the tens
of keV range generated by the well as it proceeds to the end of

“the drift chamber. The energy spectrum would, of course, depend

on the acceleration history of the well.




Let us consider the IP proton data to illustrate this point.

The observed proton energy was 4.8 = 0.9 MeV, cdrresponding to an

ion velocity = 0.1lc; the drift chamber length was 50 cm and-

L was approximately equal to 25 cm. We need to know the Kinetic

acc

- energy given an untrapped ion created in a potential well of depth

V as the well moves by it. For simplicity, we consider a well
moving with constant velocity, B¢, and obtain from relativistic
kinematics an expression for the kinetic energy, K.E., imparted

to ions as the well moves by:

K.E. = M {yz(l—a) - 1-gy [Yz(l—oa)z - 1]1/2} (4.42)

where M, is the ion rest mass, y = 1//1-g%, o = ZeV/YMicz, and
V is the well depth. If o €1, Equation (4.42) reduces to K.E.
= [ g2 (eV)z/Miczl 1/282. Thus, for protons, and B 9‘0.1,

eV = 1 MeV, the background ion energy from the accelerating well
is < 53 keV. The time for such an ion to travel the remainder

of the drift chamber (~ 25 cm) would be = 78 nggp, during which
time the beam would have certainly neutralized the potential

barrier at the downstream end of the chamber at the 300 um
pressure value. It would be important in any experiment to
rule out background ion acceleration from beam inductive fields

which might be important after space charge neutralization.
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Another possible acceleration cutoff would obtain if the
beam electrons precede the ion pulse by a sufficient distance
to give fe ~ 1 in front of the ion bunch. Secondary electrons
then "short out" or damp beam envelope oscillations. This possi-
bility is again relevant to the IP ion pulse and the second pulse
for PI. It seems unlikely that this mechanism is operative,

however, 1nasmuch as it would imply ion energies inversely

- proportional to chamber pressure and would rule out multiple

pulses,

A cutoff pfocess relevant to the first PI ion pulse, where

the beam front and ions travel together, would occur if the ion

velocity eventually reaches values such that f of the background
drops below l/y « In other words, the colllslonal “ionization
rate due to the beam electrons and accelerated ions is no longer

sufficient to maintain the f ©

l/y as the beam front penetrates
the neutral gas. One c¢an ea51ly show that for ion energies
greater than a few MeV, the accelerated ions themselves can
maintain feO l/y for typical experimental ion pulse lengths

of 10 cm and Bl 0.1. In any case, such a cutoff mechanism
would be pressure sensitive and would give a higher energy for

the second ion pulse than for the first. Moreover, this cutoff

could be overcome by a preesure gradient in the drift tube.




' Finally, we come to.a mechanism which appears to be a
likely possibility in the present experimental configuration--

depletidn of the'iOn supély behind the accelerating bunch. The

~ion supply may be depleted upstream from the pulse since ac-
“celerating fields moving in space generate a wake ion current

during pulse growth and acceleration. The electrostatic potential

well is reestablished near the anode as the ions are removed by

_the wake ion current, and the electron kinetic energy is degraded

downstream, thereby terminating acceleration. Such a mechanism
would explain multiple pulse formation; the bunching and ac-
celerating proceSS repeats as the ion charge density again grows
near the anode from collisional ionization. Also, this mechanism
would explain the inverse dependence of pulse séparation upon
pressure, since Ty « (pressure) .

We express'these remarks in a slightly more quantitative way:

tacc inon
: f [Iion - 3t dt = K, (4.43) |
Tt
o
where
Iion = average wave current behind accelerating bunch
inon
=& = ion production rate within effective supply volume
K = effective ion supply
to = time of start of acceleration
t_ = duration of acceleration
acc 3 _




term over At, Equation (4.44) says that At ~ (m. /Z)%, which,

dQion

tet — = C)/ry, and
. | BLi _ _ .
Iion ~ .fé Ib 1y c = C2 BL. * (Z/mi)
Le 1

~ where fé is the average background ion density'duting accelera~-

tion and EL ¢ is the average wake ion velocity. Then Equation

'(4.43) becoﬁes

t_ .-t ~at =K e ] (4.44)
acc_ o _ [Cz BLi . Cl/TN :

If collisional ion production is negligible compared to the I. ion

in turn, 1mp11es that the final ion energy is 1ndependent of the

ion mass, in accordance with the data.

An experimental check of the ion depletion hypothesis can
be made by measuring the electron kinetic energy as a function
of time. The number of beam electrons with energies of the
order of the injected energy should drop significantly when the
acceleration is-terminated.* "It is important that these measure-
ments be performed in the chamber interior to the electron-

- accelerating space charge fields near the downstream chamber end-

plate.

If the ion supply depletion hypothesis is experimentally.
verifield, the obvious question remains as to how to extend

L. oot i.e., how can the ion supply be enhanced? A method of

*
The beam current cannot "shut off," however, because of

inductive effects.
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effectively doing this would be to inject an accelerated ion
bunch into a second accelerating stage. The wake ion current

is inversely proportional to the injected ion velocity, and the
acceleration time in the second stage proportional to the in-
jected velocity. In principle, the average wake current could
be reduced until Cq Eii = Cl/'rN in Equation (4.44), a condition
where acceleration would no longer be supply limited.
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SECTION 5
SUMMARY
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The theoretical beam reseaxrch described in this report has
been undertaken in support.of bDe fense Nuclear Agency-sponsored
experimental research at Physics International Company and has
HE - been reported to the beam physics community and Defense Nuclear
Agency in a series of papers and reports, notably PIFR-105,
April 1970. We briefly summarize the contributions of the pro-

Cd

gram below.

1
Lj ' 1. Characterization of the Background Gas Plasma. A
procedure has been developed to predict gas breakdown
T charge densities and conductivities and degree of current
[ / neutralization as a function of gas pressure, constituency
: and beam parameters. We can thus predict conditions requlred
for beam pinching or drifting.

Lﬁ 2. Definition of High v/Y Beam Propagation Limits. An
: explanation of the propagation of v/y > 1 beams 1in terms of
T current neutralization or vnet/y, and the dominant
1j role of the electromagnetic interpretation of vnet/y were
first presented during the program.

]

{3 3. Explanation of the General Features of Beam Instability.
- The gualitative character of beam instabilities as a func-
tion of background gas pressure has been outlined. 1In

f particular, the important "frozen hose" instability of

l; ‘pinched beams at low pressure has been explained and in-
stability wavelengths may now be predicted.

l% 4. Development of the Concept of Plasma Channeling. When
o a beam breaks down the background gas, a hlghly conduct-
- ing plasma channel is formed with a "frozen-in" magnetic
l% field, which serves to guide subsequent beam electrons.

5 Understandlng the properties of the plasma channel has
important applications in beam bending and combining.




5. Role of Current Density Parameter. The importance of
the current density, in addition to the V/Y ratio, has been

~explicitly exhibited in neutral gas and external field

propagation.

6. Transport in Linear Pinch Plasmas. A complete phenomeno—'

logical exposition of beam transport in linear pinch plasmas
has been presented and a model of beam penetration of pinch
plasmas in violation of single particle orbit theory has
been developed to estimate plasma expansion due to trans-
verse pressure imbalance. Criteria for efficient beam
propagation of high V/Y, high current density beams have
been presented. '

7. Solenoidal Field Transport. A model for determining
upper limits on B, fields for efficient transport has been

proposed along with formulae to estimate beam channel dia-

magnetism or paramagnetism and its concommitant energy loss
effects. :

8. cCalculations of the Electromagnetic Fields of Beams

with Various Boundary Conditions. Exact electromagnetic
field expressions for finite beams in drift chambers of

.'finite radius and length filled with a gas of constant

conductivity and in long conducting pipes with conductivity
varying with distance behind the beam head have been
developed. Quasistatic electric field expressions have
been derived including variation of beam radius with dis-
tance and time, endplates and charge neutralization.

9. Development of Ion Acceleration Models and Analysis

of Low Pressure Beam Transport. Ion acceleration mechanisms
have been surveyed and a new accelerating process has been
proposed which gives detailed agreement with experimental
data-—-the electric fields associated with the non-adiabatic
pinch ccllapse of the beam synchronize the acceleration
process.




